This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A subset of a nullset is null. (Contributed by Mario Carneiro, 19-Mar-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ovolssnul | ⊢ ( ( 𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ ℝ ∧ ( vol* ‘ 𝐵 ) = 0 ) → ( vol* ‘ 𝐴 ) = 0 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ovolss | ⊢ ( ( 𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ ℝ ) → ( vol* ‘ 𝐴 ) ≤ ( vol* ‘ 𝐵 ) ) | |
| 2 | 1 | 3adant3 | ⊢ ( ( 𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ ℝ ∧ ( vol* ‘ 𝐵 ) = 0 ) → ( vol* ‘ 𝐴 ) ≤ ( vol* ‘ 𝐵 ) ) |
| 3 | simp3 | ⊢ ( ( 𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ ℝ ∧ ( vol* ‘ 𝐵 ) = 0 ) → ( vol* ‘ 𝐵 ) = 0 ) | |
| 4 | 2 3 | breqtrd | ⊢ ( ( 𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ ℝ ∧ ( vol* ‘ 𝐵 ) = 0 ) → ( vol* ‘ 𝐴 ) ≤ 0 ) |
| 5 | sstr | ⊢ ( ( 𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ ℝ ) → 𝐴 ⊆ ℝ ) | |
| 6 | 5 | 3adant3 | ⊢ ( ( 𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ ℝ ∧ ( vol* ‘ 𝐵 ) = 0 ) → 𝐴 ⊆ ℝ ) |
| 7 | ovolge0 | ⊢ ( 𝐴 ⊆ ℝ → 0 ≤ ( vol* ‘ 𝐴 ) ) | |
| 8 | 6 7 | syl | ⊢ ( ( 𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ ℝ ∧ ( vol* ‘ 𝐵 ) = 0 ) → 0 ≤ ( vol* ‘ 𝐴 ) ) |
| 9 | ovolcl | ⊢ ( 𝐴 ⊆ ℝ → ( vol* ‘ 𝐴 ) ∈ ℝ* ) | |
| 10 | 6 9 | syl | ⊢ ( ( 𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ ℝ ∧ ( vol* ‘ 𝐵 ) = 0 ) → ( vol* ‘ 𝐴 ) ∈ ℝ* ) |
| 11 | 0xr | ⊢ 0 ∈ ℝ* | |
| 12 | xrletri3 | ⊢ ( ( ( vol* ‘ 𝐴 ) ∈ ℝ* ∧ 0 ∈ ℝ* ) → ( ( vol* ‘ 𝐴 ) = 0 ↔ ( ( vol* ‘ 𝐴 ) ≤ 0 ∧ 0 ≤ ( vol* ‘ 𝐴 ) ) ) ) | |
| 13 | 10 11 12 | sylancl | ⊢ ( ( 𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ ℝ ∧ ( vol* ‘ 𝐵 ) = 0 ) → ( ( vol* ‘ 𝐴 ) = 0 ↔ ( ( vol* ‘ 𝐴 ) ≤ 0 ∧ 0 ≤ ( vol* ‘ 𝐴 ) ) ) ) |
| 14 | 4 8 13 | mpbir2and | ⊢ ( ( 𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ ℝ ∧ ( vol* ‘ 𝐵 ) = 0 ) → ( vol* ‘ 𝐴 ) = 0 ) |