This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The volume of A is the supremum of the sequence vol*( A i^i ( -u n , n ) ) of volumes of bounded sets. (Contributed by Mario Carneiro, 30-Aug-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | volsup2 | ⊢ ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ ∧ 𝐵 < ( vol ‘ 𝐴 ) ) → ∃ 𝑛 ∈ ℕ 𝐵 < ( vol ‘ ( 𝐴 ∩ ( - 𝑛 [,] 𝑛 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp3 | ⊢ ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ ∧ 𝐵 < ( vol ‘ 𝐴 ) ) → 𝐵 < ( vol ‘ 𝐴 ) ) | |
| 2 | rexr | ⊢ ( 𝐵 ∈ ℝ → 𝐵 ∈ ℝ* ) | |
| 3 | 2 | 3ad2ant2 | ⊢ ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ ∧ 𝐵 < ( vol ‘ 𝐴 ) ) → 𝐵 ∈ ℝ* ) |
| 4 | iccssxr | ⊢ ( 0 [,] +∞ ) ⊆ ℝ* | |
| 5 | volf | ⊢ vol : dom vol ⟶ ( 0 [,] +∞ ) | |
| 6 | 5 | ffvelcdmi | ⊢ ( 𝐴 ∈ dom vol → ( vol ‘ 𝐴 ) ∈ ( 0 [,] +∞ ) ) |
| 7 | 4 6 | sselid | ⊢ ( 𝐴 ∈ dom vol → ( vol ‘ 𝐴 ) ∈ ℝ* ) |
| 8 | 7 | 3ad2ant1 | ⊢ ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ ∧ 𝐵 < ( vol ‘ 𝐴 ) ) → ( vol ‘ 𝐴 ) ∈ ℝ* ) |
| 9 | xrltnle | ⊢ ( ( 𝐵 ∈ ℝ* ∧ ( vol ‘ 𝐴 ) ∈ ℝ* ) → ( 𝐵 < ( vol ‘ 𝐴 ) ↔ ¬ ( vol ‘ 𝐴 ) ≤ 𝐵 ) ) | |
| 10 | 3 8 9 | syl2anc | ⊢ ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ ∧ 𝐵 < ( vol ‘ 𝐴 ) ) → ( 𝐵 < ( vol ‘ 𝐴 ) ↔ ¬ ( vol ‘ 𝐴 ) ≤ 𝐵 ) ) |
| 11 | 1 10 | mpbid | ⊢ ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ ∧ 𝐵 < ( vol ‘ 𝐴 ) ) → ¬ ( vol ‘ 𝐴 ) ≤ 𝐵 ) |
| 12 | negeq | ⊢ ( 𝑚 = 𝑛 → - 𝑚 = - 𝑛 ) | |
| 13 | id | ⊢ ( 𝑚 = 𝑛 → 𝑚 = 𝑛 ) | |
| 14 | 12 13 | oveq12d | ⊢ ( 𝑚 = 𝑛 → ( - 𝑚 [,] 𝑚 ) = ( - 𝑛 [,] 𝑛 ) ) |
| 15 | 14 | ineq2d | ⊢ ( 𝑚 = 𝑛 → ( 𝐴 ∩ ( - 𝑚 [,] 𝑚 ) ) = ( 𝐴 ∩ ( - 𝑛 [,] 𝑛 ) ) ) |
| 16 | eqid | ⊢ ( 𝑚 ∈ ℕ ↦ ( 𝐴 ∩ ( - 𝑚 [,] 𝑚 ) ) ) = ( 𝑚 ∈ ℕ ↦ ( 𝐴 ∩ ( - 𝑚 [,] 𝑚 ) ) ) | |
| 17 | ovex | ⊢ ( - 𝑛 [,] 𝑛 ) ∈ V | |
| 18 | 17 | inex2 | ⊢ ( 𝐴 ∩ ( - 𝑛 [,] 𝑛 ) ) ∈ V |
| 19 | 15 16 18 | fvmpt | ⊢ ( 𝑛 ∈ ℕ → ( ( 𝑚 ∈ ℕ ↦ ( 𝐴 ∩ ( - 𝑚 [,] 𝑚 ) ) ) ‘ 𝑛 ) = ( 𝐴 ∩ ( - 𝑛 [,] 𝑛 ) ) ) |
| 20 | 19 | iuneq2i | ⊢ ∪ 𝑛 ∈ ℕ ( ( 𝑚 ∈ ℕ ↦ ( 𝐴 ∩ ( - 𝑚 [,] 𝑚 ) ) ) ‘ 𝑛 ) = ∪ 𝑛 ∈ ℕ ( 𝐴 ∩ ( - 𝑛 [,] 𝑛 ) ) |
| 21 | iunin2 | ⊢ ∪ 𝑛 ∈ ℕ ( 𝐴 ∩ ( - 𝑛 [,] 𝑛 ) ) = ( 𝐴 ∩ ∪ 𝑛 ∈ ℕ ( - 𝑛 [,] 𝑛 ) ) | |
| 22 | 20 21 | eqtri | ⊢ ∪ 𝑛 ∈ ℕ ( ( 𝑚 ∈ ℕ ↦ ( 𝐴 ∩ ( - 𝑚 [,] 𝑚 ) ) ) ‘ 𝑛 ) = ( 𝐴 ∩ ∪ 𝑛 ∈ ℕ ( - 𝑛 [,] 𝑛 ) ) |
| 23 | simpl1 | ⊢ ( ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ ∧ 𝐵 < ( vol ‘ 𝐴 ) ) ∧ 𝑛 ∈ ℕ ) → 𝐴 ∈ dom vol ) | |
| 24 | nnre | ⊢ ( 𝑛 ∈ ℕ → 𝑛 ∈ ℝ ) | |
| 25 | 24 | adantl | ⊢ ( ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ ∧ 𝐵 < ( vol ‘ 𝐴 ) ) ∧ 𝑛 ∈ ℕ ) → 𝑛 ∈ ℝ ) |
| 26 | 25 | renegcld | ⊢ ( ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ ∧ 𝐵 < ( vol ‘ 𝐴 ) ) ∧ 𝑛 ∈ ℕ ) → - 𝑛 ∈ ℝ ) |
| 27 | iccmbl | ⊢ ( ( - 𝑛 ∈ ℝ ∧ 𝑛 ∈ ℝ ) → ( - 𝑛 [,] 𝑛 ) ∈ dom vol ) | |
| 28 | 26 25 27 | syl2anc | ⊢ ( ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ ∧ 𝐵 < ( vol ‘ 𝐴 ) ) ∧ 𝑛 ∈ ℕ ) → ( - 𝑛 [,] 𝑛 ) ∈ dom vol ) |
| 29 | inmbl | ⊢ ( ( 𝐴 ∈ dom vol ∧ ( - 𝑛 [,] 𝑛 ) ∈ dom vol ) → ( 𝐴 ∩ ( - 𝑛 [,] 𝑛 ) ) ∈ dom vol ) | |
| 30 | 23 28 29 | syl2anc | ⊢ ( ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ ∧ 𝐵 < ( vol ‘ 𝐴 ) ) ∧ 𝑛 ∈ ℕ ) → ( 𝐴 ∩ ( - 𝑛 [,] 𝑛 ) ) ∈ dom vol ) |
| 31 | 15 | cbvmptv | ⊢ ( 𝑚 ∈ ℕ ↦ ( 𝐴 ∩ ( - 𝑚 [,] 𝑚 ) ) ) = ( 𝑛 ∈ ℕ ↦ ( 𝐴 ∩ ( - 𝑛 [,] 𝑛 ) ) ) |
| 32 | 30 31 | fmptd | ⊢ ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ ∧ 𝐵 < ( vol ‘ 𝐴 ) ) → ( 𝑚 ∈ ℕ ↦ ( 𝐴 ∩ ( - 𝑚 [,] 𝑚 ) ) ) : ℕ ⟶ dom vol ) |
| 33 | 32 | ffnd | ⊢ ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ ∧ 𝐵 < ( vol ‘ 𝐴 ) ) → ( 𝑚 ∈ ℕ ↦ ( 𝐴 ∩ ( - 𝑚 [,] 𝑚 ) ) ) Fn ℕ ) |
| 34 | fniunfv | ⊢ ( ( 𝑚 ∈ ℕ ↦ ( 𝐴 ∩ ( - 𝑚 [,] 𝑚 ) ) ) Fn ℕ → ∪ 𝑛 ∈ ℕ ( ( 𝑚 ∈ ℕ ↦ ( 𝐴 ∩ ( - 𝑚 [,] 𝑚 ) ) ) ‘ 𝑛 ) = ∪ ran ( 𝑚 ∈ ℕ ↦ ( 𝐴 ∩ ( - 𝑚 [,] 𝑚 ) ) ) ) | |
| 35 | 33 34 | syl | ⊢ ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ ∧ 𝐵 < ( vol ‘ 𝐴 ) ) → ∪ 𝑛 ∈ ℕ ( ( 𝑚 ∈ ℕ ↦ ( 𝐴 ∩ ( - 𝑚 [,] 𝑚 ) ) ) ‘ 𝑛 ) = ∪ ran ( 𝑚 ∈ ℕ ↦ ( 𝐴 ∩ ( - 𝑚 [,] 𝑚 ) ) ) ) |
| 36 | mblss | ⊢ ( 𝐴 ∈ dom vol → 𝐴 ⊆ ℝ ) | |
| 37 | 36 | 3ad2ant1 | ⊢ ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ ∧ 𝐵 < ( vol ‘ 𝐴 ) ) → 𝐴 ⊆ ℝ ) |
| 38 | 37 | sselda | ⊢ ( ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ ∧ 𝐵 < ( vol ‘ 𝐴 ) ) ∧ 𝑥 ∈ 𝐴 ) → 𝑥 ∈ ℝ ) |
| 39 | recn | ⊢ ( 𝑥 ∈ ℝ → 𝑥 ∈ ℂ ) | |
| 40 | 39 | abscld | ⊢ ( 𝑥 ∈ ℝ → ( abs ‘ 𝑥 ) ∈ ℝ ) |
| 41 | arch | ⊢ ( ( abs ‘ 𝑥 ) ∈ ℝ → ∃ 𝑛 ∈ ℕ ( abs ‘ 𝑥 ) < 𝑛 ) | |
| 42 | 40 41 | syl | ⊢ ( 𝑥 ∈ ℝ → ∃ 𝑛 ∈ ℕ ( abs ‘ 𝑥 ) < 𝑛 ) |
| 43 | ltle | ⊢ ( ( ( abs ‘ 𝑥 ) ∈ ℝ ∧ 𝑛 ∈ ℝ ) → ( ( abs ‘ 𝑥 ) < 𝑛 → ( abs ‘ 𝑥 ) ≤ 𝑛 ) ) | |
| 44 | 40 24 43 | syl2an | ⊢ ( ( 𝑥 ∈ ℝ ∧ 𝑛 ∈ ℕ ) → ( ( abs ‘ 𝑥 ) < 𝑛 → ( abs ‘ 𝑥 ) ≤ 𝑛 ) ) |
| 45 | id | ⊢ ( ( 𝑥 ∈ ℝ ∧ - 𝑛 ≤ 𝑥 ∧ 𝑥 ≤ 𝑛 ) → ( 𝑥 ∈ ℝ ∧ - 𝑛 ≤ 𝑥 ∧ 𝑥 ≤ 𝑛 ) ) | |
| 46 | 45 | 3expib | ⊢ ( 𝑥 ∈ ℝ → ( ( - 𝑛 ≤ 𝑥 ∧ 𝑥 ≤ 𝑛 ) → ( 𝑥 ∈ ℝ ∧ - 𝑛 ≤ 𝑥 ∧ 𝑥 ≤ 𝑛 ) ) ) |
| 47 | 46 | adantr | ⊢ ( ( 𝑥 ∈ ℝ ∧ 𝑛 ∈ ℕ ) → ( ( - 𝑛 ≤ 𝑥 ∧ 𝑥 ≤ 𝑛 ) → ( 𝑥 ∈ ℝ ∧ - 𝑛 ≤ 𝑥 ∧ 𝑥 ≤ 𝑛 ) ) ) |
| 48 | absle | ⊢ ( ( 𝑥 ∈ ℝ ∧ 𝑛 ∈ ℝ ) → ( ( abs ‘ 𝑥 ) ≤ 𝑛 ↔ ( - 𝑛 ≤ 𝑥 ∧ 𝑥 ≤ 𝑛 ) ) ) | |
| 49 | 24 48 | sylan2 | ⊢ ( ( 𝑥 ∈ ℝ ∧ 𝑛 ∈ ℕ ) → ( ( abs ‘ 𝑥 ) ≤ 𝑛 ↔ ( - 𝑛 ≤ 𝑥 ∧ 𝑥 ≤ 𝑛 ) ) ) |
| 50 | 24 | adantl | ⊢ ( ( 𝑥 ∈ ℝ ∧ 𝑛 ∈ ℕ ) → 𝑛 ∈ ℝ ) |
| 51 | 50 | renegcld | ⊢ ( ( 𝑥 ∈ ℝ ∧ 𝑛 ∈ ℕ ) → - 𝑛 ∈ ℝ ) |
| 52 | elicc2 | ⊢ ( ( - 𝑛 ∈ ℝ ∧ 𝑛 ∈ ℝ ) → ( 𝑥 ∈ ( - 𝑛 [,] 𝑛 ) ↔ ( 𝑥 ∈ ℝ ∧ - 𝑛 ≤ 𝑥 ∧ 𝑥 ≤ 𝑛 ) ) ) | |
| 53 | 51 50 52 | syl2anc | ⊢ ( ( 𝑥 ∈ ℝ ∧ 𝑛 ∈ ℕ ) → ( 𝑥 ∈ ( - 𝑛 [,] 𝑛 ) ↔ ( 𝑥 ∈ ℝ ∧ - 𝑛 ≤ 𝑥 ∧ 𝑥 ≤ 𝑛 ) ) ) |
| 54 | 47 49 53 | 3imtr4d | ⊢ ( ( 𝑥 ∈ ℝ ∧ 𝑛 ∈ ℕ ) → ( ( abs ‘ 𝑥 ) ≤ 𝑛 → 𝑥 ∈ ( - 𝑛 [,] 𝑛 ) ) ) |
| 55 | 44 54 | syld | ⊢ ( ( 𝑥 ∈ ℝ ∧ 𝑛 ∈ ℕ ) → ( ( abs ‘ 𝑥 ) < 𝑛 → 𝑥 ∈ ( - 𝑛 [,] 𝑛 ) ) ) |
| 56 | 55 | reximdva | ⊢ ( 𝑥 ∈ ℝ → ( ∃ 𝑛 ∈ ℕ ( abs ‘ 𝑥 ) < 𝑛 → ∃ 𝑛 ∈ ℕ 𝑥 ∈ ( - 𝑛 [,] 𝑛 ) ) ) |
| 57 | 42 56 | mpd | ⊢ ( 𝑥 ∈ ℝ → ∃ 𝑛 ∈ ℕ 𝑥 ∈ ( - 𝑛 [,] 𝑛 ) ) |
| 58 | 38 57 | syl | ⊢ ( ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ ∧ 𝐵 < ( vol ‘ 𝐴 ) ) ∧ 𝑥 ∈ 𝐴 ) → ∃ 𝑛 ∈ ℕ 𝑥 ∈ ( - 𝑛 [,] 𝑛 ) ) |
| 59 | 58 | ex | ⊢ ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ ∧ 𝐵 < ( vol ‘ 𝐴 ) ) → ( 𝑥 ∈ 𝐴 → ∃ 𝑛 ∈ ℕ 𝑥 ∈ ( - 𝑛 [,] 𝑛 ) ) ) |
| 60 | eliun | ⊢ ( 𝑥 ∈ ∪ 𝑛 ∈ ℕ ( - 𝑛 [,] 𝑛 ) ↔ ∃ 𝑛 ∈ ℕ 𝑥 ∈ ( - 𝑛 [,] 𝑛 ) ) | |
| 61 | 59 60 | imbitrrdi | ⊢ ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ ∧ 𝐵 < ( vol ‘ 𝐴 ) ) → ( 𝑥 ∈ 𝐴 → 𝑥 ∈ ∪ 𝑛 ∈ ℕ ( - 𝑛 [,] 𝑛 ) ) ) |
| 62 | 61 | ssrdv | ⊢ ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ ∧ 𝐵 < ( vol ‘ 𝐴 ) ) → 𝐴 ⊆ ∪ 𝑛 ∈ ℕ ( - 𝑛 [,] 𝑛 ) ) |
| 63 | dfss2 | ⊢ ( 𝐴 ⊆ ∪ 𝑛 ∈ ℕ ( - 𝑛 [,] 𝑛 ) ↔ ( 𝐴 ∩ ∪ 𝑛 ∈ ℕ ( - 𝑛 [,] 𝑛 ) ) = 𝐴 ) | |
| 64 | 62 63 | sylib | ⊢ ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ ∧ 𝐵 < ( vol ‘ 𝐴 ) ) → ( 𝐴 ∩ ∪ 𝑛 ∈ ℕ ( - 𝑛 [,] 𝑛 ) ) = 𝐴 ) |
| 65 | 22 35 64 | 3eqtr3a | ⊢ ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ ∧ 𝐵 < ( vol ‘ 𝐴 ) ) → ∪ ran ( 𝑚 ∈ ℕ ↦ ( 𝐴 ∩ ( - 𝑚 [,] 𝑚 ) ) ) = 𝐴 ) |
| 66 | 65 | fveq2d | ⊢ ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ ∧ 𝐵 < ( vol ‘ 𝐴 ) ) → ( vol ‘ ∪ ran ( 𝑚 ∈ ℕ ↦ ( 𝐴 ∩ ( - 𝑚 [,] 𝑚 ) ) ) ) = ( vol ‘ 𝐴 ) ) |
| 67 | peano2re | ⊢ ( 𝑛 ∈ ℝ → ( 𝑛 + 1 ) ∈ ℝ ) | |
| 68 | 25 67 | syl | ⊢ ( ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ ∧ 𝐵 < ( vol ‘ 𝐴 ) ) ∧ 𝑛 ∈ ℕ ) → ( 𝑛 + 1 ) ∈ ℝ ) |
| 69 | 68 | renegcld | ⊢ ( ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ ∧ 𝐵 < ( vol ‘ 𝐴 ) ) ∧ 𝑛 ∈ ℕ ) → - ( 𝑛 + 1 ) ∈ ℝ ) |
| 70 | 25 | lep1d | ⊢ ( ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ ∧ 𝐵 < ( vol ‘ 𝐴 ) ) ∧ 𝑛 ∈ ℕ ) → 𝑛 ≤ ( 𝑛 + 1 ) ) |
| 71 | 25 68 | lenegd | ⊢ ( ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ ∧ 𝐵 < ( vol ‘ 𝐴 ) ) ∧ 𝑛 ∈ ℕ ) → ( 𝑛 ≤ ( 𝑛 + 1 ) ↔ - ( 𝑛 + 1 ) ≤ - 𝑛 ) ) |
| 72 | 70 71 | mpbid | ⊢ ( ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ ∧ 𝐵 < ( vol ‘ 𝐴 ) ) ∧ 𝑛 ∈ ℕ ) → - ( 𝑛 + 1 ) ≤ - 𝑛 ) |
| 73 | iccss | ⊢ ( ( ( - ( 𝑛 + 1 ) ∈ ℝ ∧ ( 𝑛 + 1 ) ∈ ℝ ) ∧ ( - ( 𝑛 + 1 ) ≤ - 𝑛 ∧ 𝑛 ≤ ( 𝑛 + 1 ) ) ) → ( - 𝑛 [,] 𝑛 ) ⊆ ( - ( 𝑛 + 1 ) [,] ( 𝑛 + 1 ) ) ) | |
| 74 | 69 68 72 70 73 | syl22anc | ⊢ ( ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ ∧ 𝐵 < ( vol ‘ 𝐴 ) ) ∧ 𝑛 ∈ ℕ ) → ( - 𝑛 [,] 𝑛 ) ⊆ ( - ( 𝑛 + 1 ) [,] ( 𝑛 + 1 ) ) ) |
| 75 | sslin | ⊢ ( ( - 𝑛 [,] 𝑛 ) ⊆ ( - ( 𝑛 + 1 ) [,] ( 𝑛 + 1 ) ) → ( 𝐴 ∩ ( - 𝑛 [,] 𝑛 ) ) ⊆ ( 𝐴 ∩ ( - ( 𝑛 + 1 ) [,] ( 𝑛 + 1 ) ) ) ) | |
| 76 | 74 75 | syl | ⊢ ( ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ ∧ 𝐵 < ( vol ‘ 𝐴 ) ) ∧ 𝑛 ∈ ℕ ) → ( 𝐴 ∩ ( - 𝑛 [,] 𝑛 ) ) ⊆ ( 𝐴 ∩ ( - ( 𝑛 + 1 ) [,] ( 𝑛 + 1 ) ) ) ) |
| 77 | 19 | adantl | ⊢ ( ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ ∧ 𝐵 < ( vol ‘ 𝐴 ) ) ∧ 𝑛 ∈ ℕ ) → ( ( 𝑚 ∈ ℕ ↦ ( 𝐴 ∩ ( - 𝑚 [,] 𝑚 ) ) ) ‘ 𝑛 ) = ( 𝐴 ∩ ( - 𝑛 [,] 𝑛 ) ) ) |
| 78 | peano2nn | ⊢ ( 𝑛 ∈ ℕ → ( 𝑛 + 1 ) ∈ ℕ ) | |
| 79 | 78 | adantl | ⊢ ( ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ ∧ 𝐵 < ( vol ‘ 𝐴 ) ) ∧ 𝑛 ∈ ℕ ) → ( 𝑛 + 1 ) ∈ ℕ ) |
| 80 | negeq | ⊢ ( 𝑚 = ( 𝑛 + 1 ) → - 𝑚 = - ( 𝑛 + 1 ) ) | |
| 81 | id | ⊢ ( 𝑚 = ( 𝑛 + 1 ) → 𝑚 = ( 𝑛 + 1 ) ) | |
| 82 | 80 81 | oveq12d | ⊢ ( 𝑚 = ( 𝑛 + 1 ) → ( - 𝑚 [,] 𝑚 ) = ( - ( 𝑛 + 1 ) [,] ( 𝑛 + 1 ) ) ) |
| 83 | 82 | ineq2d | ⊢ ( 𝑚 = ( 𝑛 + 1 ) → ( 𝐴 ∩ ( - 𝑚 [,] 𝑚 ) ) = ( 𝐴 ∩ ( - ( 𝑛 + 1 ) [,] ( 𝑛 + 1 ) ) ) ) |
| 84 | ovex | ⊢ ( - ( 𝑛 + 1 ) [,] ( 𝑛 + 1 ) ) ∈ V | |
| 85 | 84 | inex2 | ⊢ ( 𝐴 ∩ ( - ( 𝑛 + 1 ) [,] ( 𝑛 + 1 ) ) ) ∈ V |
| 86 | 83 16 85 | fvmpt | ⊢ ( ( 𝑛 + 1 ) ∈ ℕ → ( ( 𝑚 ∈ ℕ ↦ ( 𝐴 ∩ ( - 𝑚 [,] 𝑚 ) ) ) ‘ ( 𝑛 + 1 ) ) = ( 𝐴 ∩ ( - ( 𝑛 + 1 ) [,] ( 𝑛 + 1 ) ) ) ) |
| 87 | 79 86 | syl | ⊢ ( ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ ∧ 𝐵 < ( vol ‘ 𝐴 ) ) ∧ 𝑛 ∈ ℕ ) → ( ( 𝑚 ∈ ℕ ↦ ( 𝐴 ∩ ( - 𝑚 [,] 𝑚 ) ) ) ‘ ( 𝑛 + 1 ) ) = ( 𝐴 ∩ ( - ( 𝑛 + 1 ) [,] ( 𝑛 + 1 ) ) ) ) |
| 88 | 76 77 87 | 3sstr4d | ⊢ ( ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ ∧ 𝐵 < ( vol ‘ 𝐴 ) ) ∧ 𝑛 ∈ ℕ ) → ( ( 𝑚 ∈ ℕ ↦ ( 𝐴 ∩ ( - 𝑚 [,] 𝑚 ) ) ) ‘ 𝑛 ) ⊆ ( ( 𝑚 ∈ ℕ ↦ ( 𝐴 ∩ ( - 𝑚 [,] 𝑚 ) ) ) ‘ ( 𝑛 + 1 ) ) ) |
| 89 | 88 | ralrimiva | ⊢ ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ ∧ 𝐵 < ( vol ‘ 𝐴 ) ) → ∀ 𝑛 ∈ ℕ ( ( 𝑚 ∈ ℕ ↦ ( 𝐴 ∩ ( - 𝑚 [,] 𝑚 ) ) ) ‘ 𝑛 ) ⊆ ( ( 𝑚 ∈ ℕ ↦ ( 𝐴 ∩ ( - 𝑚 [,] 𝑚 ) ) ) ‘ ( 𝑛 + 1 ) ) ) |
| 90 | volsup | ⊢ ( ( ( 𝑚 ∈ ℕ ↦ ( 𝐴 ∩ ( - 𝑚 [,] 𝑚 ) ) ) : ℕ ⟶ dom vol ∧ ∀ 𝑛 ∈ ℕ ( ( 𝑚 ∈ ℕ ↦ ( 𝐴 ∩ ( - 𝑚 [,] 𝑚 ) ) ) ‘ 𝑛 ) ⊆ ( ( 𝑚 ∈ ℕ ↦ ( 𝐴 ∩ ( - 𝑚 [,] 𝑚 ) ) ) ‘ ( 𝑛 + 1 ) ) ) → ( vol ‘ ∪ ran ( 𝑚 ∈ ℕ ↦ ( 𝐴 ∩ ( - 𝑚 [,] 𝑚 ) ) ) ) = sup ( ( vol “ ran ( 𝑚 ∈ ℕ ↦ ( 𝐴 ∩ ( - 𝑚 [,] 𝑚 ) ) ) ) , ℝ* , < ) ) | |
| 91 | 32 89 90 | syl2anc | ⊢ ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ ∧ 𝐵 < ( vol ‘ 𝐴 ) ) → ( vol ‘ ∪ ran ( 𝑚 ∈ ℕ ↦ ( 𝐴 ∩ ( - 𝑚 [,] 𝑚 ) ) ) ) = sup ( ( vol “ ran ( 𝑚 ∈ ℕ ↦ ( 𝐴 ∩ ( - 𝑚 [,] 𝑚 ) ) ) ) , ℝ* , < ) ) |
| 92 | 66 91 | eqtr3d | ⊢ ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ ∧ 𝐵 < ( vol ‘ 𝐴 ) ) → ( vol ‘ 𝐴 ) = sup ( ( vol “ ran ( 𝑚 ∈ ℕ ↦ ( 𝐴 ∩ ( - 𝑚 [,] 𝑚 ) ) ) ) , ℝ* , < ) ) |
| 93 | 92 | breq1d | ⊢ ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ ∧ 𝐵 < ( vol ‘ 𝐴 ) ) → ( ( vol ‘ 𝐴 ) ≤ 𝐵 ↔ sup ( ( vol “ ran ( 𝑚 ∈ ℕ ↦ ( 𝐴 ∩ ( - 𝑚 [,] 𝑚 ) ) ) ) , ℝ* , < ) ≤ 𝐵 ) ) |
| 94 | imassrn | ⊢ ( vol “ ran ( 𝑚 ∈ ℕ ↦ ( 𝐴 ∩ ( - 𝑚 [,] 𝑚 ) ) ) ) ⊆ ran vol | |
| 95 | frn | ⊢ ( vol : dom vol ⟶ ( 0 [,] +∞ ) → ran vol ⊆ ( 0 [,] +∞ ) ) | |
| 96 | 5 95 | ax-mp | ⊢ ran vol ⊆ ( 0 [,] +∞ ) |
| 97 | 96 4 | sstri | ⊢ ran vol ⊆ ℝ* |
| 98 | 94 97 | sstri | ⊢ ( vol “ ran ( 𝑚 ∈ ℕ ↦ ( 𝐴 ∩ ( - 𝑚 [,] 𝑚 ) ) ) ) ⊆ ℝ* |
| 99 | supxrleub | ⊢ ( ( ( vol “ ran ( 𝑚 ∈ ℕ ↦ ( 𝐴 ∩ ( - 𝑚 [,] 𝑚 ) ) ) ) ⊆ ℝ* ∧ 𝐵 ∈ ℝ* ) → ( sup ( ( vol “ ran ( 𝑚 ∈ ℕ ↦ ( 𝐴 ∩ ( - 𝑚 [,] 𝑚 ) ) ) ) , ℝ* , < ) ≤ 𝐵 ↔ ∀ 𝑛 ∈ ( vol “ ran ( 𝑚 ∈ ℕ ↦ ( 𝐴 ∩ ( - 𝑚 [,] 𝑚 ) ) ) ) 𝑛 ≤ 𝐵 ) ) | |
| 100 | 98 3 99 | sylancr | ⊢ ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ ∧ 𝐵 < ( vol ‘ 𝐴 ) ) → ( sup ( ( vol “ ran ( 𝑚 ∈ ℕ ↦ ( 𝐴 ∩ ( - 𝑚 [,] 𝑚 ) ) ) ) , ℝ* , < ) ≤ 𝐵 ↔ ∀ 𝑛 ∈ ( vol “ ran ( 𝑚 ∈ ℕ ↦ ( 𝐴 ∩ ( - 𝑚 [,] 𝑚 ) ) ) ) 𝑛 ≤ 𝐵 ) ) |
| 101 | ffn | ⊢ ( vol : dom vol ⟶ ( 0 [,] +∞ ) → vol Fn dom vol ) | |
| 102 | 5 101 | ax-mp | ⊢ vol Fn dom vol |
| 103 | 32 | frnd | ⊢ ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ ∧ 𝐵 < ( vol ‘ 𝐴 ) ) → ran ( 𝑚 ∈ ℕ ↦ ( 𝐴 ∩ ( - 𝑚 [,] 𝑚 ) ) ) ⊆ dom vol ) |
| 104 | breq1 | ⊢ ( 𝑛 = ( vol ‘ 𝑧 ) → ( 𝑛 ≤ 𝐵 ↔ ( vol ‘ 𝑧 ) ≤ 𝐵 ) ) | |
| 105 | 104 | ralima | ⊢ ( ( vol Fn dom vol ∧ ran ( 𝑚 ∈ ℕ ↦ ( 𝐴 ∩ ( - 𝑚 [,] 𝑚 ) ) ) ⊆ dom vol ) → ( ∀ 𝑛 ∈ ( vol “ ran ( 𝑚 ∈ ℕ ↦ ( 𝐴 ∩ ( - 𝑚 [,] 𝑚 ) ) ) ) 𝑛 ≤ 𝐵 ↔ ∀ 𝑧 ∈ ran ( 𝑚 ∈ ℕ ↦ ( 𝐴 ∩ ( - 𝑚 [,] 𝑚 ) ) ) ( vol ‘ 𝑧 ) ≤ 𝐵 ) ) |
| 106 | 102 103 105 | sylancr | ⊢ ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ ∧ 𝐵 < ( vol ‘ 𝐴 ) ) → ( ∀ 𝑛 ∈ ( vol “ ran ( 𝑚 ∈ ℕ ↦ ( 𝐴 ∩ ( - 𝑚 [,] 𝑚 ) ) ) ) 𝑛 ≤ 𝐵 ↔ ∀ 𝑧 ∈ ran ( 𝑚 ∈ ℕ ↦ ( 𝐴 ∩ ( - 𝑚 [,] 𝑚 ) ) ) ( vol ‘ 𝑧 ) ≤ 𝐵 ) ) |
| 107 | fveq2 | ⊢ ( 𝑧 = ( ( 𝑚 ∈ ℕ ↦ ( 𝐴 ∩ ( - 𝑚 [,] 𝑚 ) ) ) ‘ 𝑛 ) → ( vol ‘ 𝑧 ) = ( vol ‘ ( ( 𝑚 ∈ ℕ ↦ ( 𝐴 ∩ ( - 𝑚 [,] 𝑚 ) ) ) ‘ 𝑛 ) ) ) | |
| 108 | 107 | breq1d | ⊢ ( 𝑧 = ( ( 𝑚 ∈ ℕ ↦ ( 𝐴 ∩ ( - 𝑚 [,] 𝑚 ) ) ) ‘ 𝑛 ) → ( ( vol ‘ 𝑧 ) ≤ 𝐵 ↔ ( vol ‘ ( ( 𝑚 ∈ ℕ ↦ ( 𝐴 ∩ ( - 𝑚 [,] 𝑚 ) ) ) ‘ 𝑛 ) ) ≤ 𝐵 ) ) |
| 109 | 108 | ralrn | ⊢ ( ( 𝑚 ∈ ℕ ↦ ( 𝐴 ∩ ( - 𝑚 [,] 𝑚 ) ) ) Fn ℕ → ( ∀ 𝑧 ∈ ran ( 𝑚 ∈ ℕ ↦ ( 𝐴 ∩ ( - 𝑚 [,] 𝑚 ) ) ) ( vol ‘ 𝑧 ) ≤ 𝐵 ↔ ∀ 𝑛 ∈ ℕ ( vol ‘ ( ( 𝑚 ∈ ℕ ↦ ( 𝐴 ∩ ( - 𝑚 [,] 𝑚 ) ) ) ‘ 𝑛 ) ) ≤ 𝐵 ) ) |
| 110 | 33 109 | syl | ⊢ ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ ∧ 𝐵 < ( vol ‘ 𝐴 ) ) → ( ∀ 𝑧 ∈ ran ( 𝑚 ∈ ℕ ↦ ( 𝐴 ∩ ( - 𝑚 [,] 𝑚 ) ) ) ( vol ‘ 𝑧 ) ≤ 𝐵 ↔ ∀ 𝑛 ∈ ℕ ( vol ‘ ( ( 𝑚 ∈ ℕ ↦ ( 𝐴 ∩ ( - 𝑚 [,] 𝑚 ) ) ) ‘ 𝑛 ) ) ≤ 𝐵 ) ) |
| 111 | 19 | fveq2d | ⊢ ( 𝑛 ∈ ℕ → ( vol ‘ ( ( 𝑚 ∈ ℕ ↦ ( 𝐴 ∩ ( - 𝑚 [,] 𝑚 ) ) ) ‘ 𝑛 ) ) = ( vol ‘ ( 𝐴 ∩ ( - 𝑛 [,] 𝑛 ) ) ) ) |
| 112 | 111 | breq1d | ⊢ ( 𝑛 ∈ ℕ → ( ( vol ‘ ( ( 𝑚 ∈ ℕ ↦ ( 𝐴 ∩ ( - 𝑚 [,] 𝑚 ) ) ) ‘ 𝑛 ) ) ≤ 𝐵 ↔ ( vol ‘ ( 𝐴 ∩ ( - 𝑛 [,] 𝑛 ) ) ) ≤ 𝐵 ) ) |
| 113 | 112 | ralbiia | ⊢ ( ∀ 𝑛 ∈ ℕ ( vol ‘ ( ( 𝑚 ∈ ℕ ↦ ( 𝐴 ∩ ( - 𝑚 [,] 𝑚 ) ) ) ‘ 𝑛 ) ) ≤ 𝐵 ↔ ∀ 𝑛 ∈ ℕ ( vol ‘ ( 𝐴 ∩ ( - 𝑛 [,] 𝑛 ) ) ) ≤ 𝐵 ) |
| 114 | 110 113 | bitrdi | ⊢ ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ ∧ 𝐵 < ( vol ‘ 𝐴 ) ) → ( ∀ 𝑧 ∈ ran ( 𝑚 ∈ ℕ ↦ ( 𝐴 ∩ ( - 𝑚 [,] 𝑚 ) ) ) ( vol ‘ 𝑧 ) ≤ 𝐵 ↔ ∀ 𝑛 ∈ ℕ ( vol ‘ ( 𝐴 ∩ ( - 𝑛 [,] 𝑛 ) ) ) ≤ 𝐵 ) ) |
| 115 | 106 114 | bitrd | ⊢ ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ ∧ 𝐵 < ( vol ‘ 𝐴 ) ) → ( ∀ 𝑛 ∈ ( vol “ ran ( 𝑚 ∈ ℕ ↦ ( 𝐴 ∩ ( - 𝑚 [,] 𝑚 ) ) ) ) 𝑛 ≤ 𝐵 ↔ ∀ 𝑛 ∈ ℕ ( vol ‘ ( 𝐴 ∩ ( - 𝑛 [,] 𝑛 ) ) ) ≤ 𝐵 ) ) |
| 116 | 93 100 115 | 3bitrd | ⊢ ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ ∧ 𝐵 < ( vol ‘ 𝐴 ) ) → ( ( vol ‘ 𝐴 ) ≤ 𝐵 ↔ ∀ 𝑛 ∈ ℕ ( vol ‘ ( 𝐴 ∩ ( - 𝑛 [,] 𝑛 ) ) ) ≤ 𝐵 ) ) |
| 117 | 11 116 | mtbid | ⊢ ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ ∧ 𝐵 < ( vol ‘ 𝐴 ) ) → ¬ ∀ 𝑛 ∈ ℕ ( vol ‘ ( 𝐴 ∩ ( - 𝑛 [,] 𝑛 ) ) ) ≤ 𝐵 ) |
| 118 | rexnal | ⊢ ( ∃ 𝑛 ∈ ℕ ¬ ( vol ‘ ( 𝐴 ∩ ( - 𝑛 [,] 𝑛 ) ) ) ≤ 𝐵 ↔ ¬ ∀ 𝑛 ∈ ℕ ( vol ‘ ( 𝐴 ∩ ( - 𝑛 [,] 𝑛 ) ) ) ≤ 𝐵 ) | |
| 119 | 117 118 | sylibr | ⊢ ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ ∧ 𝐵 < ( vol ‘ 𝐴 ) ) → ∃ 𝑛 ∈ ℕ ¬ ( vol ‘ ( 𝐴 ∩ ( - 𝑛 [,] 𝑛 ) ) ) ≤ 𝐵 ) |
| 120 | 3 | adantr | ⊢ ( ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ ∧ 𝐵 < ( vol ‘ 𝐴 ) ) ∧ 𝑛 ∈ ℕ ) → 𝐵 ∈ ℝ* ) |
| 121 | 5 | ffvelcdmi | ⊢ ( ( 𝐴 ∩ ( - 𝑛 [,] 𝑛 ) ) ∈ dom vol → ( vol ‘ ( 𝐴 ∩ ( - 𝑛 [,] 𝑛 ) ) ) ∈ ( 0 [,] +∞ ) ) |
| 122 | 4 121 | sselid | ⊢ ( ( 𝐴 ∩ ( - 𝑛 [,] 𝑛 ) ) ∈ dom vol → ( vol ‘ ( 𝐴 ∩ ( - 𝑛 [,] 𝑛 ) ) ) ∈ ℝ* ) |
| 123 | 30 122 | syl | ⊢ ( ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ ∧ 𝐵 < ( vol ‘ 𝐴 ) ) ∧ 𝑛 ∈ ℕ ) → ( vol ‘ ( 𝐴 ∩ ( - 𝑛 [,] 𝑛 ) ) ) ∈ ℝ* ) |
| 124 | xrltnle | ⊢ ( ( 𝐵 ∈ ℝ* ∧ ( vol ‘ ( 𝐴 ∩ ( - 𝑛 [,] 𝑛 ) ) ) ∈ ℝ* ) → ( 𝐵 < ( vol ‘ ( 𝐴 ∩ ( - 𝑛 [,] 𝑛 ) ) ) ↔ ¬ ( vol ‘ ( 𝐴 ∩ ( - 𝑛 [,] 𝑛 ) ) ) ≤ 𝐵 ) ) | |
| 125 | 120 123 124 | syl2anc | ⊢ ( ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ ∧ 𝐵 < ( vol ‘ 𝐴 ) ) ∧ 𝑛 ∈ ℕ ) → ( 𝐵 < ( vol ‘ ( 𝐴 ∩ ( - 𝑛 [,] 𝑛 ) ) ) ↔ ¬ ( vol ‘ ( 𝐴 ∩ ( - 𝑛 [,] 𝑛 ) ) ) ≤ 𝐵 ) ) |
| 126 | 125 | rexbidva | ⊢ ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ ∧ 𝐵 < ( vol ‘ 𝐴 ) ) → ( ∃ 𝑛 ∈ ℕ 𝐵 < ( vol ‘ ( 𝐴 ∩ ( - 𝑛 [,] 𝑛 ) ) ) ↔ ∃ 𝑛 ∈ ℕ ¬ ( vol ‘ ( 𝐴 ∩ ( - 𝑛 [,] 𝑛 ) ) ) ≤ 𝐵 ) ) |
| 127 | 119 126 | mpbird | ⊢ ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ ∧ 𝐵 < ( vol ‘ 𝐴 ) ) → ∃ 𝑛 ∈ ℕ 𝐵 < ( vol ‘ ( 𝐴 ∩ ( - 𝑛 [,] 𝑛 ) ) ) ) |