This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The function formed by restricting a measurable set to a closed interval with a varying endpoint produces an increasing continuous function on the reals. (Contributed by Mario Carneiro, 30-Aug-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | volcn.1 | ⊢ 𝐹 = ( 𝑥 ∈ ℝ ↦ ( vol ‘ ( 𝐴 ∩ ( 𝐵 [,] 𝑥 ) ) ) ) | |
| Assertion | volcn | ⊢ ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ ) → 𝐹 ∈ ( ℝ –cn→ ℝ ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | volcn.1 | ⊢ 𝐹 = ( 𝑥 ∈ ℝ ↦ ( vol ‘ ( 𝐴 ∩ ( 𝐵 [,] 𝑥 ) ) ) ) | |
| 2 | simpll | ⊢ ( ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ ) ∧ 𝑥 ∈ ℝ ) → 𝐴 ∈ dom vol ) | |
| 3 | iccmbl | ⊢ ( ( 𝐵 ∈ ℝ ∧ 𝑥 ∈ ℝ ) → ( 𝐵 [,] 𝑥 ) ∈ dom vol ) | |
| 4 | 3 | adantll | ⊢ ( ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ ) ∧ 𝑥 ∈ ℝ ) → ( 𝐵 [,] 𝑥 ) ∈ dom vol ) |
| 5 | inmbl | ⊢ ( ( 𝐴 ∈ dom vol ∧ ( 𝐵 [,] 𝑥 ) ∈ dom vol ) → ( 𝐴 ∩ ( 𝐵 [,] 𝑥 ) ) ∈ dom vol ) | |
| 6 | 2 4 5 | syl2anc | ⊢ ( ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ ) ∧ 𝑥 ∈ ℝ ) → ( 𝐴 ∩ ( 𝐵 [,] 𝑥 ) ) ∈ dom vol ) |
| 7 | mblvol | ⊢ ( ( 𝐴 ∩ ( 𝐵 [,] 𝑥 ) ) ∈ dom vol → ( vol ‘ ( 𝐴 ∩ ( 𝐵 [,] 𝑥 ) ) ) = ( vol* ‘ ( 𝐴 ∩ ( 𝐵 [,] 𝑥 ) ) ) ) | |
| 8 | 6 7 | syl | ⊢ ( ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ ) ∧ 𝑥 ∈ ℝ ) → ( vol ‘ ( 𝐴 ∩ ( 𝐵 [,] 𝑥 ) ) ) = ( vol* ‘ ( 𝐴 ∩ ( 𝐵 [,] 𝑥 ) ) ) ) |
| 9 | inss2 | ⊢ ( 𝐴 ∩ ( 𝐵 [,] 𝑥 ) ) ⊆ ( 𝐵 [,] 𝑥 ) | |
| 10 | mblss | ⊢ ( ( 𝐵 [,] 𝑥 ) ∈ dom vol → ( 𝐵 [,] 𝑥 ) ⊆ ℝ ) | |
| 11 | 4 10 | syl | ⊢ ( ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ ) ∧ 𝑥 ∈ ℝ ) → ( 𝐵 [,] 𝑥 ) ⊆ ℝ ) |
| 12 | mblvol | ⊢ ( ( 𝐵 [,] 𝑥 ) ∈ dom vol → ( vol ‘ ( 𝐵 [,] 𝑥 ) ) = ( vol* ‘ ( 𝐵 [,] 𝑥 ) ) ) | |
| 13 | 4 12 | syl | ⊢ ( ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ ) ∧ 𝑥 ∈ ℝ ) → ( vol ‘ ( 𝐵 [,] 𝑥 ) ) = ( vol* ‘ ( 𝐵 [,] 𝑥 ) ) ) |
| 14 | iccvolcl | ⊢ ( ( 𝐵 ∈ ℝ ∧ 𝑥 ∈ ℝ ) → ( vol ‘ ( 𝐵 [,] 𝑥 ) ) ∈ ℝ ) | |
| 15 | 14 | adantll | ⊢ ( ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ ) ∧ 𝑥 ∈ ℝ ) → ( vol ‘ ( 𝐵 [,] 𝑥 ) ) ∈ ℝ ) |
| 16 | 13 15 | eqeltrrd | ⊢ ( ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ ) ∧ 𝑥 ∈ ℝ ) → ( vol* ‘ ( 𝐵 [,] 𝑥 ) ) ∈ ℝ ) |
| 17 | ovolsscl | ⊢ ( ( ( 𝐴 ∩ ( 𝐵 [,] 𝑥 ) ) ⊆ ( 𝐵 [,] 𝑥 ) ∧ ( 𝐵 [,] 𝑥 ) ⊆ ℝ ∧ ( vol* ‘ ( 𝐵 [,] 𝑥 ) ) ∈ ℝ ) → ( vol* ‘ ( 𝐴 ∩ ( 𝐵 [,] 𝑥 ) ) ) ∈ ℝ ) | |
| 18 | 9 11 16 17 | mp3an2i | ⊢ ( ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ ) ∧ 𝑥 ∈ ℝ ) → ( vol* ‘ ( 𝐴 ∩ ( 𝐵 [,] 𝑥 ) ) ) ∈ ℝ ) |
| 19 | 8 18 | eqeltrd | ⊢ ( ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ ) ∧ 𝑥 ∈ ℝ ) → ( vol ‘ ( 𝐴 ∩ ( 𝐵 [,] 𝑥 ) ) ) ∈ ℝ ) |
| 20 | 19 1 | fmptd | ⊢ ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ ) → 𝐹 : ℝ ⟶ ℝ ) |
| 21 | simprr | ⊢ ( ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ ) ∧ ( 𝑦 ∈ ℝ ∧ 𝑒 ∈ ℝ+ ) ) → 𝑒 ∈ ℝ+ ) | |
| 22 | oveq12 | ⊢ ( ( 𝑣 = 𝑧 ∧ 𝑢 = 𝑦 ) → ( 𝑣 − 𝑢 ) = ( 𝑧 − 𝑦 ) ) | |
| 23 | 22 | ancoms | ⊢ ( ( 𝑢 = 𝑦 ∧ 𝑣 = 𝑧 ) → ( 𝑣 − 𝑢 ) = ( 𝑧 − 𝑦 ) ) |
| 24 | 23 | fveq2d | ⊢ ( ( 𝑢 = 𝑦 ∧ 𝑣 = 𝑧 ) → ( abs ‘ ( 𝑣 − 𝑢 ) ) = ( abs ‘ ( 𝑧 − 𝑦 ) ) ) |
| 25 | 24 | breq1d | ⊢ ( ( 𝑢 = 𝑦 ∧ 𝑣 = 𝑧 ) → ( ( abs ‘ ( 𝑣 − 𝑢 ) ) < 𝑒 ↔ ( abs ‘ ( 𝑧 − 𝑦 ) ) < 𝑒 ) ) |
| 26 | fveq2 | ⊢ ( 𝑣 = 𝑧 → ( 𝐹 ‘ 𝑣 ) = ( 𝐹 ‘ 𝑧 ) ) | |
| 27 | fveq2 | ⊢ ( 𝑢 = 𝑦 → ( 𝐹 ‘ 𝑢 ) = ( 𝐹 ‘ 𝑦 ) ) | |
| 28 | 26 27 | oveqan12rd | ⊢ ( ( 𝑢 = 𝑦 ∧ 𝑣 = 𝑧 ) → ( ( 𝐹 ‘ 𝑣 ) − ( 𝐹 ‘ 𝑢 ) ) = ( ( 𝐹 ‘ 𝑧 ) − ( 𝐹 ‘ 𝑦 ) ) ) |
| 29 | 28 | fveq2d | ⊢ ( ( 𝑢 = 𝑦 ∧ 𝑣 = 𝑧 ) → ( abs ‘ ( ( 𝐹 ‘ 𝑣 ) − ( 𝐹 ‘ 𝑢 ) ) ) = ( abs ‘ ( ( 𝐹 ‘ 𝑧 ) − ( 𝐹 ‘ 𝑦 ) ) ) ) |
| 30 | 29 | breq1d | ⊢ ( ( 𝑢 = 𝑦 ∧ 𝑣 = 𝑧 ) → ( ( abs ‘ ( ( 𝐹 ‘ 𝑣 ) − ( 𝐹 ‘ 𝑢 ) ) ) < 𝑒 ↔ ( abs ‘ ( ( 𝐹 ‘ 𝑧 ) − ( 𝐹 ‘ 𝑦 ) ) ) < 𝑒 ) ) |
| 31 | 25 30 | imbi12d | ⊢ ( ( 𝑢 = 𝑦 ∧ 𝑣 = 𝑧 ) → ( ( ( abs ‘ ( 𝑣 − 𝑢 ) ) < 𝑒 → ( abs ‘ ( ( 𝐹 ‘ 𝑣 ) − ( 𝐹 ‘ 𝑢 ) ) ) < 𝑒 ) ↔ ( ( abs ‘ ( 𝑧 − 𝑦 ) ) < 𝑒 → ( abs ‘ ( ( 𝐹 ‘ 𝑧 ) − ( 𝐹 ‘ 𝑦 ) ) ) < 𝑒 ) ) ) |
| 32 | oveq12 | ⊢ ( ( 𝑣 = 𝑦 ∧ 𝑢 = 𝑧 ) → ( 𝑣 − 𝑢 ) = ( 𝑦 − 𝑧 ) ) | |
| 33 | 32 | ancoms | ⊢ ( ( 𝑢 = 𝑧 ∧ 𝑣 = 𝑦 ) → ( 𝑣 − 𝑢 ) = ( 𝑦 − 𝑧 ) ) |
| 34 | 33 | fveq2d | ⊢ ( ( 𝑢 = 𝑧 ∧ 𝑣 = 𝑦 ) → ( abs ‘ ( 𝑣 − 𝑢 ) ) = ( abs ‘ ( 𝑦 − 𝑧 ) ) ) |
| 35 | 34 | breq1d | ⊢ ( ( 𝑢 = 𝑧 ∧ 𝑣 = 𝑦 ) → ( ( abs ‘ ( 𝑣 − 𝑢 ) ) < 𝑒 ↔ ( abs ‘ ( 𝑦 − 𝑧 ) ) < 𝑒 ) ) |
| 36 | fveq2 | ⊢ ( 𝑣 = 𝑦 → ( 𝐹 ‘ 𝑣 ) = ( 𝐹 ‘ 𝑦 ) ) | |
| 37 | fveq2 | ⊢ ( 𝑢 = 𝑧 → ( 𝐹 ‘ 𝑢 ) = ( 𝐹 ‘ 𝑧 ) ) | |
| 38 | 36 37 | oveqan12rd | ⊢ ( ( 𝑢 = 𝑧 ∧ 𝑣 = 𝑦 ) → ( ( 𝐹 ‘ 𝑣 ) − ( 𝐹 ‘ 𝑢 ) ) = ( ( 𝐹 ‘ 𝑦 ) − ( 𝐹 ‘ 𝑧 ) ) ) |
| 39 | 38 | fveq2d | ⊢ ( ( 𝑢 = 𝑧 ∧ 𝑣 = 𝑦 ) → ( abs ‘ ( ( 𝐹 ‘ 𝑣 ) − ( 𝐹 ‘ 𝑢 ) ) ) = ( abs ‘ ( ( 𝐹 ‘ 𝑦 ) − ( 𝐹 ‘ 𝑧 ) ) ) ) |
| 40 | 39 | breq1d | ⊢ ( ( 𝑢 = 𝑧 ∧ 𝑣 = 𝑦 ) → ( ( abs ‘ ( ( 𝐹 ‘ 𝑣 ) − ( 𝐹 ‘ 𝑢 ) ) ) < 𝑒 ↔ ( abs ‘ ( ( 𝐹 ‘ 𝑦 ) − ( 𝐹 ‘ 𝑧 ) ) ) < 𝑒 ) ) |
| 41 | 35 40 | imbi12d | ⊢ ( ( 𝑢 = 𝑧 ∧ 𝑣 = 𝑦 ) → ( ( ( abs ‘ ( 𝑣 − 𝑢 ) ) < 𝑒 → ( abs ‘ ( ( 𝐹 ‘ 𝑣 ) − ( 𝐹 ‘ 𝑢 ) ) ) < 𝑒 ) ↔ ( ( abs ‘ ( 𝑦 − 𝑧 ) ) < 𝑒 → ( abs ‘ ( ( 𝐹 ‘ 𝑦 ) − ( 𝐹 ‘ 𝑧 ) ) ) < 𝑒 ) ) ) |
| 42 | ssidd | ⊢ ( ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ ) ∧ 𝑒 ∈ ℝ+ ) → ℝ ⊆ ℝ ) | |
| 43 | recn | ⊢ ( 𝑧 ∈ ℝ → 𝑧 ∈ ℂ ) | |
| 44 | recn | ⊢ ( 𝑦 ∈ ℝ → 𝑦 ∈ ℂ ) | |
| 45 | abssub | ⊢ ( ( 𝑧 ∈ ℂ ∧ 𝑦 ∈ ℂ ) → ( abs ‘ ( 𝑧 − 𝑦 ) ) = ( abs ‘ ( 𝑦 − 𝑧 ) ) ) | |
| 46 | 43 44 45 | syl2anr | ⊢ ( ( 𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ) → ( abs ‘ ( 𝑧 − 𝑦 ) ) = ( abs ‘ ( 𝑦 − 𝑧 ) ) ) |
| 47 | 46 | adantl | ⊢ ( ( ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ ) ∧ 𝑒 ∈ ℝ+ ) ∧ ( 𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ) ) → ( abs ‘ ( 𝑧 − 𝑦 ) ) = ( abs ‘ ( 𝑦 − 𝑧 ) ) ) |
| 48 | 47 | breq1d | ⊢ ( ( ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ ) ∧ 𝑒 ∈ ℝ+ ) ∧ ( 𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ) ) → ( ( abs ‘ ( 𝑧 − 𝑦 ) ) < 𝑒 ↔ ( abs ‘ ( 𝑦 − 𝑧 ) ) < 𝑒 ) ) |
| 49 | 20 | adantr | ⊢ ( ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ ) ∧ 𝑒 ∈ ℝ+ ) → 𝐹 : ℝ ⟶ ℝ ) |
| 50 | ffvelcdm | ⊢ ( ( 𝐹 : ℝ ⟶ ℝ ∧ 𝑦 ∈ ℝ ) → ( 𝐹 ‘ 𝑦 ) ∈ ℝ ) | |
| 51 | ffvelcdm | ⊢ ( ( 𝐹 : ℝ ⟶ ℝ ∧ 𝑧 ∈ ℝ ) → ( 𝐹 ‘ 𝑧 ) ∈ ℝ ) | |
| 52 | 50 51 | anim12dan | ⊢ ( ( 𝐹 : ℝ ⟶ ℝ ∧ ( 𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ) ) → ( ( 𝐹 ‘ 𝑦 ) ∈ ℝ ∧ ( 𝐹 ‘ 𝑧 ) ∈ ℝ ) ) |
| 53 | 49 52 | sylan | ⊢ ( ( ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ ) ∧ 𝑒 ∈ ℝ+ ) ∧ ( 𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ) ) → ( ( 𝐹 ‘ 𝑦 ) ∈ ℝ ∧ ( 𝐹 ‘ 𝑧 ) ∈ ℝ ) ) |
| 54 | recn | ⊢ ( ( 𝐹 ‘ 𝑧 ) ∈ ℝ → ( 𝐹 ‘ 𝑧 ) ∈ ℂ ) | |
| 55 | recn | ⊢ ( ( 𝐹 ‘ 𝑦 ) ∈ ℝ → ( 𝐹 ‘ 𝑦 ) ∈ ℂ ) | |
| 56 | abssub | ⊢ ( ( ( 𝐹 ‘ 𝑧 ) ∈ ℂ ∧ ( 𝐹 ‘ 𝑦 ) ∈ ℂ ) → ( abs ‘ ( ( 𝐹 ‘ 𝑧 ) − ( 𝐹 ‘ 𝑦 ) ) ) = ( abs ‘ ( ( 𝐹 ‘ 𝑦 ) − ( 𝐹 ‘ 𝑧 ) ) ) ) | |
| 57 | 54 55 56 | syl2anr | ⊢ ( ( ( 𝐹 ‘ 𝑦 ) ∈ ℝ ∧ ( 𝐹 ‘ 𝑧 ) ∈ ℝ ) → ( abs ‘ ( ( 𝐹 ‘ 𝑧 ) − ( 𝐹 ‘ 𝑦 ) ) ) = ( abs ‘ ( ( 𝐹 ‘ 𝑦 ) − ( 𝐹 ‘ 𝑧 ) ) ) ) |
| 58 | 53 57 | syl | ⊢ ( ( ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ ) ∧ 𝑒 ∈ ℝ+ ) ∧ ( 𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ) ) → ( abs ‘ ( ( 𝐹 ‘ 𝑧 ) − ( 𝐹 ‘ 𝑦 ) ) ) = ( abs ‘ ( ( 𝐹 ‘ 𝑦 ) − ( 𝐹 ‘ 𝑧 ) ) ) ) |
| 59 | 58 | breq1d | ⊢ ( ( ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ ) ∧ 𝑒 ∈ ℝ+ ) ∧ ( 𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ) ) → ( ( abs ‘ ( ( 𝐹 ‘ 𝑧 ) − ( 𝐹 ‘ 𝑦 ) ) ) < 𝑒 ↔ ( abs ‘ ( ( 𝐹 ‘ 𝑦 ) − ( 𝐹 ‘ 𝑧 ) ) ) < 𝑒 ) ) |
| 60 | 48 59 | imbi12d | ⊢ ( ( ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ ) ∧ 𝑒 ∈ ℝ+ ) ∧ ( 𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ) ) → ( ( ( abs ‘ ( 𝑧 − 𝑦 ) ) < 𝑒 → ( abs ‘ ( ( 𝐹 ‘ 𝑧 ) − ( 𝐹 ‘ 𝑦 ) ) ) < 𝑒 ) ↔ ( ( abs ‘ ( 𝑦 − 𝑧 ) ) < 𝑒 → ( abs ‘ ( ( 𝐹 ‘ 𝑦 ) − ( 𝐹 ‘ 𝑧 ) ) ) < 𝑒 ) ) ) |
| 61 | simpr2 | ⊢ ( ( ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ ) ∧ 𝑒 ∈ ℝ+ ) ∧ ( 𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦 ≤ 𝑧 ) ) → 𝑧 ∈ ℝ ) | |
| 62 | oveq2 | ⊢ ( 𝑥 = 𝑧 → ( 𝐵 [,] 𝑥 ) = ( 𝐵 [,] 𝑧 ) ) | |
| 63 | 62 | ineq2d | ⊢ ( 𝑥 = 𝑧 → ( 𝐴 ∩ ( 𝐵 [,] 𝑥 ) ) = ( 𝐴 ∩ ( 𝐵 [,] 𝑧 ) ) ) |
| 64 | 63 | fveq2d | ⊢ ( 𝑥 = 𝑧 → ( vol ‘ ( 𝐴 ∩ ( 𝐵 [,] 𝑥 ) ) ) = ( vol ‘ ( 𝐴 ∩ ( 𝐵 [,] 𝑧 ) ) ) ) |
| 65 | fvex | ⊢ ( vol ‘ ( 𝐴 ∩ ( 𝐵 [,] 𝑧 ) ) ) ∈ V | |
| 66 | 64 1 65 | fvmpt | ⊢ ( 𝑧 ∈ ℝ → ( 𝐹 ‘ 𝑧 ) = ( vol ‘ ( 𝐴 ∩ ( 𝐵 [,] 𝑧 ) ) ) ) |
| 67 | 61 66 | syl | ⊢ ( ( ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ ) ∧ 𝑒 ∈ ℝ+ ) ∧ ( 𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦 ≤ 𝑧 ) ) → ( 𝐹 ‘ 𝑧 ) = ( vol ‘ ( 𝐴 ∩ ( 𝐵 [,] 𝑧 ) ) ) ) |
| 68 | simplll | ⊢ ( ( ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ ) ∧ 𝑒 ∈ ℝ+ ) ∧ ( 𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦 ≤ 𝑧 ) ) → 𝐴 ∈ dom vol ) | |
| 69 | simplr | ⊢ ( ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ ) ∧ 𝑒 ∈ ℝ+ ) → 𝐵 ∈ ℝ ) | |
| 70 | 69 | adantr | ⊢ ( ( ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ ) ∧ 𝑒 ∈ ℝ+ ) ∧ ( 𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦 ≤ 𝑧 ) ) → 𝐵 ∈ ℝ ) |
| 71 | iccmbl | ⊢ ( ( 𝐵 ∈ ℝ ∧ 𝑧 ∈ ℝ ) → ( 𝐵 [,] 𝑧 ) ∈ dom vol ) | |
| 72 | 70 61 71 | syl2anc | ⊢ ( ( ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ ) ∧ 𝑒 ∈ ℝ+ ) ∧ ( 𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦 ≤ 𝑧 ) ) → ( 𝐵 [,] 𝑧 ) ∈ dom vol ) |
| 73 | inmbl | ⊢ ( ( 𝐴 ∈ dom vol ∧ ( 𝐵 [,] 𝑧 ) ∈ dom vol ) → ( 𝐴 ∩ ( 𝐵 [,] 𝑧 ) ) ∈ dom vol ) | |
| 74 | 68 72 73 | syl2anc | ⊢ ( ( ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ ) ∧ 𝑒 ∈ ℝ+ ) ∧ ( 𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦 ≤ 𝑧 ) ) → ( 𝐴 ∩ ( 𝐵 [,] 𝑧 ) ) ∈ dom vol ) |
| 75 | mblvol | ⊢ ( ( 𝐴 ∩ ( 𝐵 [,] 𝑧 ) ) ∈ dom vol → ( vol ‘ ( 𝐴 ∩ ( 𝐵 [,] 𝑧 ) ) ) = ( vol* ‘ ( 𝐴 ∩ ( 𝐵 [,] 𝑧 ) ) ) ) | |
| 76 | 74 75 | syl | ⊢ ( ( ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ ) ∧ 𝑒 ∈ ℝ+ ) ∧ ( 𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦 ≤ 𝑧 ) ) → ( vol ‘ ( 𝐴 ∩ ( 𝐵 [,] 𝑧 ) ) ) = ( vol* ‘ ( 𝐴 ∩ ( 𝐵 [,] 𝑧 ) ) ) ) |
| 77 | 67 76 | eqtrd | ⊢ ( ( ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ ) ∧ 𝑒 ∈ ℝ+ ) ∧ ( 𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦 ≤ 𝑧 ) ) → ( 𝐹 ‘ 𝑧 ) = ( vol* ‘ ( 𝐴 ∩ ( 𝐵 [,] 𝑧 ) ) ) ) |
| 78 | simpr1 | ⊢ ( ( ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ ) ∧ 𝑒 ∈ ℝ+ ) ∧ ( 𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦 ≤ 𝑧 ) ) → 𝑦 ∈ ℝ ) | |
| 79 | oveq2 | ⊢ ( 𝑥 = 𝑦 → ( 𝐵 [,] 𝑥 ) = ( 𝐵 [,] 𝑦 ) ) | |
| 80 | 79 | ineq2d | ⊢ ( 𝑥 = 𝑦 → ( 𝐴 ∩ ( 𝐵 [,] 𝑥 ) ) = ( 𝐴 ∩ ( 𝐵 [,] 𝑦 ) ) ) |
| 81 | 80 | fveq2d | ⊢ ( 𝑥 = 𝑦 → ( vol ‘ ( 𝐴 ∩ ( 𝐵 [,] 𝑥 ) ) ) = ( vol ‘ ( 𝐴 ∩ ( 𝐵 [,] 𝑦 ) ) ) ) |
| 82 | fvex | ⊢ ( vol ‘ ( 𝐴 ∩ ( 𝐵 [,] 𝑦 ) ) ) ∈ V | |
| 83 | 81 1 82 | fvmpt | ⊢ ( 𝑦 ∈ ℝ → ( 𝐹 ‘ 𝑦 ) = ( vol ‘ ( 𝐴 ∩ ( 𝐵 [,] 𝑦 ) ) ) ) |
| 84 | 78 83 | syl | ⊢ ( ( ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ ) ∧ 𝑒 ∈ ℝ+ ) ∧ ( 𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦 ≤ 𝑧 ) ) → ( 𝐹 ‘ 𝑦 ) = ( vol ‘ ( 𝐴 ∩ ( 𝐵 [,] 𝑦 ) ) ) ) |
| 85 | simp1 | ⊢ ( ( 𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦 ≤ 𝑧 ) → 𝑦 ∈ ℝ ) | |
| 86 | iccmbl | ⊢ ( ( 𝐵 ∈ ℝ ∧ 𝑦 ∈ ℝ ) → ( 𝐵 [,] 𝑦 ) ∈ dom vol ) | |
| 87 | 69 85 86 | syl2an | ⊢ ( ( ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ ) ∧ 𝑒 ∈ ℝ+ ) ∧ ( 𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦 ≤ 𝑧 ) ) → ( 𝐵 [,] 𝑦 ) ∈ dom vol ) |
| 88 | inmbl | ⊢ ( ( 𝐴 ∈ dom vol ∧ ( 𝐵 [,] 𝑦 ) ∈ dom vol ) → ( 𝐴 ∩ ( 𝐵 [,] 𝑦 ) ) ∈ dom vol ) | |
| 89 | 68 87 88 | syl2anc | ⊢ ( ( ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ ) ∧ 𝑒 ∈ ℝ+ ) ∧ ( 𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦 ≤ 𝑧 ) ) → ( 𝐴 ∩ ( 𝐵 [,] 𝑦 ) ) ∈ dom vol ) |
| 90 | mblvol | ⊢ ( ( 𝐴 ∩ ( 𝐵 [,] 𝑦 ) ) ∈ dom vol → ( vol ‘ ( 𝐴 ∩ ( 𝐵 [,] 𝑦 ) ) ) = ( vol* ‘ ( 𝐴 ∩ ( 𝐵 [,] 𝑦 ) ) ) ) | |
| 91 | 89 90 | syl | ⊢ ( ( ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ ) ∧ 𝑒 ∈ ℝ+ ) ∧ ( 𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦 ≤ 𝑧 ) ) → ( vol ‘ ( 𝐴 ∩ ( 𝐵 [,] 𝑦 ) ) ) = ( vol* ‘ ( 𝐴 ∩ ( 𝐵 [,] 𝑦 ) ) ) ) |
| 92 | 84 91 | eqtrd | ⊢ ( ( ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ ) ∧ 𝑒 ∈ ℝ+ ) ∧ ( 𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦 ≤ 𝑧 ) ) → ( 𝐹 ‘ 𝑦 ) = ( vol* ‘ ( 𝐴 ∩ ( 𝐵 [,] 𝑦 ) ) ) ) |
| 93 | 77 92 | oveq12d | ⊢ ( ( ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ ) ∧ 𝑒 ∈ ℝ+ ) ∧ ( 𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦 ≤ 𝑧 ) ) → ( ( 𝐹 ‘ 𝑧 ) − ( 𝐹 ‘ 𝑦 ) ) = ( ( vol* ‘ ( 𝐴 ∩ ( 𝐵 [,] 𝑧 ) ) ) − ( vol* ‘ ( 𝐴 ∩ ( 𝐵 [,] 𝑦 ) ) ) ) ) |
| 94 | 49 | adantr | ⊢ ( ( ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ ) ∧ 𝑒 ∈ ℝ+ ) ∧ ( 𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦 ≤ 𝑧 ) ) → 𝐹 : ℝ ⟶ ℝ ) |
| 95 | 94 61 | ffvelcdmd | ⊢ ( ( ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ ) ∧ 𝑒 ∈ ℝ+ ) ∧ ( 𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦 ≤ 𝑧 ) ) → ( 𝐹 ‘ 𝑧 ) ∈ ℝ ) |
| 96 | 77 95 | eqeltrrd | ⊢ ( ( ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ ) ∧ 𝑒 ∈ ℝ+ ) ∧ ( 𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦 ≤ 𝑧 ) ) → ( vol* ‘ ( 𝐴 ∩ ( 𝐵 [,] 𝑧 ) ) ) ∈ ℝ ) |
| 97 | 70 | leidd | ⊢ ( ( ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ ) ∧ 𝑒 ∈ ℝ+ ) ∧ ( 𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦 ≤ 𝑧 ) ) → 𝐵 ≤ 𝐵 ) |
| 98 | simpr3 | ⊢ ( ( ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ ) ∧ 𝑒 ∈ ℝ+ ) ∧ ( 𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦 ≤ 𝑧 ) ) → 𝑦 ≤ 𝑧 ) | |
| 99 | iccss | ⊢ ( ( ( 𝐵 ∈ ℝ ∧ 𝑧 ∈ ℝ ) ∧ ( 𝐵 ≤ 𝐵 ∧ 𝑦 ≤ 𝑧 ) ) → ( 𝐵 [,] 𝑦 ) ⊆ ( 𝐵 [,] 𝑧 ) ) | |
| 100 | 70 61 97 98 99 | syl22anc | ⊢ ( ( ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ ) ∧ 𝑒 ∈ ℝ+ ) ∧ ( 𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦 ≤ 𝑧 ) ) → ( 𝐵 [,] 𝑦 ) ⊆ ( 𝐵 [,] 𝑧 ) ) |
| 101 | sslin | ⊢ ( ( 𝐵 [,] 𝑦 ) ⊆ ( 𝐵 [,] 𝑧 ) → ( 𝐴 ∩ ( 𝐵 [,] 𝑦 ) ) ⊆ ( 𝐴 ∩ ( 𝐵 [,] 𝑧 ) ) ) | |
| 102 | 100 101 | syl | ⊢ ( ( ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ ) ∧ 𝑒 ∈ ℝ+ ) ∧ ( 𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦 ≤ 𝑧 ) ) → ( 𝐴 ∩ ( 𝐵 [,] 𝑦 ) ) ⊆ ( 𝐴 ∩ ( 𝐵 [,] 𝑧 ) ) ) |
| 103 | mblss | ⊢ ( ( 𝐴 ∩ ( 𝐵 [,] 𝑧 ) ) ∈ dom vol → ( 𝐴 ∩ ( 𝐵 [,] 𝑧 ) ) ⊆ ℝ ) | |
| 104 | 74 103 | syl | ⊢ ( ( ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ ) ∧ 𝑒 ∈ ℝ+ ) ∧ ( 𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦 ≤ 𝑧 ) ) → ( 𝐴 ∩ ( 𝐵 [,] 𝑧 ) ) ⊆ ℝ ) |
| 105 | 102 104 | sstrd | ⊢ ( ( ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ ) ∧ 𝑒 ∈ ℝ+ ) ∧ ( 𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦 ≤ 𝑧 ) ) → ( 𝐴 ∩ ( 𝐵 [,] 𝑦 ) ) ⊆ ℝ ) |
| 106 | iccssre | ⊢ ( ( 𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ) → ( 𝑦 [,] 𝑧 ) ⊆ ℝ ) | |
| 107 | 78 61 106 | syl2anc | ⊢ ( ( ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ ) ∧ 𝑒 ∈ ℝ+ ) ∧ ( 𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦 ≤ 𝑧 ) ) → ( 𝑦 [,] 𝑧 ) ⊆ ℝ ) |
| 108 | 105 107 | unssd | ⊢ ( ( ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ ) ∧ 𝑒 ∈ ℝ+ ) ∧ ( 𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦 ≤ 𝑧 ) ) → ( ( 𝐴 ∩ ( 𝐵 [,] 𝑦 ) ) ∪ ( 𝑦 [,] 𝑧 ) ) ⊆ ℝ ) |
| 109 | 94 78 | ffvelcdmd | ⊢ ( ( ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ ) ∧ 𝑒 ∈ ℝ+ ) ∧ ( 𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦 ≤ 𝑧 ) ) → ( 𝐹 ‘ 𝑦 ) ∈ ℝ ) |
| 110 | 92 109 | eqeltrrd | ⊢ ( ( ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ ) ∧ 𝑒 ∈ ℝ+ ) ∧ ( 𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦 ≤ 𝑧 ) ) → ( vol* ‘ ( 𝐴 ∩ ( 𝐵 [,] 𝑦 ) ) ) ∈ ℝ ) |
| 111 | 61 78 | resubcld | ⊢ ( ( ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ ) ∧ 𝑒 ∈ ℝ+ ) ∧ ( 𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦 ≤ 𝑧 ) ) → ( 𝑧 − 𝑦 ) ∈ ℝ ) |
| 112 | 110 111 | readdcld | ⊢ ( ( ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ ) ∧ 𝑒 ∈ ℝ+ ) ∧ ( 𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦 ≤ 𝑧 ) ) → ( ( vol* ‘ ( 𝐴 ∩ ( 𝐵 [,] 𝑦 ) ) ) + ( 𝑧 − 𝑦 ) ) ∈ ℝ ) |
| 113 | ovolicc | ⊢ ( ( 𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦 ≤ 𝑧 ) → ( vol* ‘ ( 𝑦 [,] 𝑧 ) ) = ( 𝑧 − 𝑦 ) ) | |
| 114 | 113 | adantl | ⊢ ( ( ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ ) ∧ 𝑒 ∈ ℝ+ ) ∧ ( 𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦 ≤ 𝑧 ) ) → ( vol* ‘ ( 𝑦 [,] 𝑧 ) ) = ( 𝑧 − 𝑦 ) ) |
| 115 | 114 111 | eqeltrd | ⊢ ( ( ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ ) ∧ 𝑒 ∈ ℝ+ ) ∧ ( 𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦 ≤ 𝑧 ) ) → ( vol* ‘ ( 𝑦 [,] 𝑧 ) ) ∈ ℝ ) |
| 116 | ovolun | ⊢ ( ( ( ( 𝐴 ∩ ( 𝐵 [,] 𝑦 ) ) ⊆ ℝ ∧ ( vol* ‘ ( 𝐴 ∩ ( 𝐵 [,] 𝑦 ) ) ) ∈ ℝ ) ∧ ( ( 𝑦 [,] 𝑧 ) ⊆ ℝ ∧ ( vol* ‘ ( 𝑦 [,] 𝑧 ) ) ∈ ℝ ) ) → ( vol* ‘ ( ( 𝐴 ∩ ( 𝐵 [,] 𝑦 ) ) ∪ ( 𝑦 [,] 𝑧 ) ) ) ≤ ( ( vol* ‘ ( 𝐴 ∩ ( 𝐵 [,] 𝑦 ) ) ) + ( vol* ‘ ( 𝑦 [,] 𝑧 ) ) ) ) | |
| 117 | 105 110 107 115 116 | syl22anc | ⊢ ( ( ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ ) ∧ 𝑒 ∈ ℝ+ ) ∧ ( 𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦 ≤ 𝑧 ) ) → ( vol* ‘ ( ( 𝐴 ∩ ( 𝐵 [,] 𝑦 ) ) ∪ ( 𝑦 [,] 𝑧 ) ) ) ≤ ( ( vol* ‘ ( 𝐴 ∩ ( 𝐵 [,] 𝑦 ) ) ) + ( vol* ‘ ( 𝑦 [,] 𝑧 ) ) ) ) |
| 118 | 114 | oveq2d | ⊢ ( ( ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ ) ∧ 𝑒 ∈ ℝ+ ) ∧ ( 𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦 ≤ 𝑧 ) ) → ( ( vol* ‘ ( 𝐴 ∩ ( 𝐵 [,] 𝑦 ) ) ) + ( vol* ‘ ( 𝑦 [,] 𝑧 ) ) ) = ( ( vol* ‘ ( 𝐴 ∩ ( 𝐵 [,] 𝑦 ) ) ) + ( 𝑧 − 𝑦 ) ) ) |
| 119 | 117 118 | breqtrd | ⊢ ( ( ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ ) ∧ 𝑒 ∈ ℝ+ ) ∧ ( 𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦 ≤ 𝑧 ) ) → ( vol* ‘ ( ( 𝐴 ∩ ( 𝐵 [,] 𝑦 ) ) ∪ ( 𝑦 [,] 𝑧 ) ) ) ≤ ( ( vol* ‘ ( 𝐴 ∩ ( 𝐵 [,] 𝑦 ) ) ) + ( 𝑧 − 𝑦 ) ) ) |
| 120 | ovollecl | ⊢ ( ( ( ( 𝐴 ∩ ( 𝐵 [,] 𝑦 ) ) ∪ ( 𝑦 [,] 𝑧 ) ) ⊆ ℝ ∧ ( ( vol* ‘ ( 𝐴 ∩ ( 𝐵 [,] 𝑦 ) ) ) + ( 𝑧 − 𝑦 ) ) ∈ ℝ ∧ ( vol* ‘ ( ( 𝐴 ∩ ( 𝐵 [,] 𝑦 ) ) ∪ ( 𝑦 [,] 𝑧 ) ) ) ≤ ( ( vol* ‘ ( 𝐴 ∩ ( 𝐵 [,] 𝑦 ) ) ) + ( 𝑧 − 𝑦 ) ) ) → ( vol* ‘ ( ( 𝐴 ∩ ( 𝐵 [,] 𝑦 ) ) ∪ ( 𝑦 [,] 𝑧 ) ) ) ∈ ℝ ) | |
| 121 | 108 112 119 120 | syl3anc | ⊢ ( ( ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ ) ∧ 𝑒 ∈ ℝ+ ) ∧ ( 𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦 ≤ 𝑧 ) ) → ( vol* ‘ ( ( 𝐴 ∩ ( 𝐵 [,] 𝑦 ) ) ∪ ( 𝑦 [,] 𝑧 ) ) ) ∈ ℝ ) |
| 122 | 70 | adantr | ⊢ ( ( ( ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ ) ∧ 𝑒 ∈ ℝ+ ) ∧ ( 𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦 ≤ 𝑧 ) ) ∧ 𝐵 ≤ 𝑦 ) → 𝐵 ∈ ℝ ) |
| 123 | 61 | adantr | ⊢ ( ( ( ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ ) ∧ 𝑒 ∈ ℝ+ ) ∧ ( 𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦 ≤ 𝑧 ) ) ∧ 𝐵 ≤ 𝑦 ) → 𝑧 ∈ ℝ ) |
| 124 | 78 | adantr | ⊢ ( ( ( ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ ) ∧ 𝑒 ∈ ℝ+ ) ∧ ( 𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦 ≤ 𝑧 ) ) ∧ 𝐵 ≤ 𝑦 ) → 𝑦 ∈ ℝ ) |
| 125 | simpr | ⊢ ( ( ( ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ ) ∧ 𝑒 ∈ ℝ+ ) ∧ ( 𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦 ≤ 𝑧 ) ) ∧ 𝐵 ≤ 𝑦 ) → 𝐵 ≤ 𝑦 ) | |
| 126 | 98 | adantr | ⊢ ( ( ( ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ ) ∧ 𝑒 ∈ ℝ+ ) ∧ ( 𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦 ≤ 𝑧 ) ) ∧ 𝐵 ≤ 𝑦 ) → 𝑦 ≤ 𝑧 ) |
| 127 | simp2 | ⊢ ( ( 𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦 ≤ 𝑧 ) → 𝑧 ∈ ℝ ) | |
| 128 | elicc2 | ⊢ ( ( 𝐵 ∈ ℝ ∧ 𝑧 ∈ ℝ ) → ( 𝑦 ∈ ( 𝐵 [,] 𝑧 ) ↔ ( 𝑦 ∈ ℝ ∧ 𝐵 ≤ 𝑦 ∧ 𝑦 ≤ 𝑧 ) ) ) | |
| 129 | 69 127 128 | syl2an | ⊢ ( ( ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ ) ∧ 𝑒 ∈ ℝ+ ) ∧ ( 𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦 ≤ 𝑧 ) ) → ( 𝑦 ∈ ( 𝐵 [,] 𝑧 ) ↔ ( 𝑦 ∈ ℝ ∧ 𝐵 ≤ 𝑦 ∧ 𝑦 ≤ 𝑧 ) ) ) |
| 130 | 129 | adantr | ⊢ ( ( ( ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ ) ∧ 𝑒 ∈ ℝ+ ) ∧ ( 𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦 ≤ 𝑧 ) ) ∧ 𝐵 ≤ 𝑦 ) → ( 𝑦 ∈ ( 𝐵 [,] 𝑧 ) ↔ ( 𝑦 ∈ ℝ ∧ 𝐵 ≤ 𝑦 ∧ 𝑦 ≤ 𝑧 ) ) ) |
| 131 | 124 125 126 130 | mpbir3and | ⊢ ( ( ( ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ ) ∧ 𝑒 ∈ ℝ+ ) ∧ ( 𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦 ≤ 𝑧 ) ) ∧ 𝐵 ≤ 𝑦 ) → 𝑦 ∈ ( 𝐵 [,] 𝑧 ) ) |
| 132 | iccsplit | ⊢ ( ( 𝐵 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦 ∈ ( 𝐵 [,] 𝑧 ) ) → ( 𝐵 [,] 𝑧 ) = ( ( 𝐵 [,] 𝑦 ) ∪ ( 𝑦 [,] 𝑧 ) ) ) | |
| 133 | 122 123 131 132 | syl3anc | ⊢ ( ( ( ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ ) ∧ 𝑒 ∈ ℝ+ ) ∧ ( 𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦 ≤ 𝑧 ) ) ∧ 𝐵 ≤ 𝑦 ) → ( 𝐵 [,] 𝑧 ) = ( ( 𝐵 [,] 𝑦 ) ∪ ( 𝑦 [,] 𝑧 ) ) ) |
| 134 | eqimss | ⊢ ( ( 𝐵 [,] 𝑧 ) = ( ( 𝐵 [,] 𝑦 ) ∪ ( 𝑦 [,] 𝑧 ) ) → ( 𝐵 [,] 𝑧 ) ⊆ ( ( 𝐵 [,] 𝑦 ) ∪ ( 𝑦 [,] 𝑧 ) ) ) | |
| 135 | 133 134 | syl | ⊢ ( ( ( ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ ) ∧ 𝑒 ∈ ℝ+ ) ∧ ( 𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦 ≤ 𝑧 ) ) ∧ 𝐵 ≤ 𝑦 ) → ( 𝐵 [,] 𝑧 ) ⊆ ( ( 𝐵 [,] 𝑦 ) ∪ ( 𝑦 [,] 𝑧 ) ) ) |
| 136 | 78 | adantr | ⊢ ( ( ( ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ ) ∧ 𝑒 ∈ ℝ+ ) ∧ ( 𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦 ≤ 𝑧 ) ) ∧ 𝑦 ≤ 𝐵 ) → 𝑦 ∈ ℝ ) |
| 137 | 61 | adantr | ⊢ ( ( ( ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ ) ∧ 𝑒 ∈ ℝ+ ) ∧ ( 𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦 ≤ 𝑧 ) ) ∧ 𝑦 ≤ 𝐵 ) → 𝑧 ∈ ℝ ) |
| 138 | simpr | ⊢ ( ( ( ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ ) ∧ 𝑒 ∈ ℝ+ ) ∧ ( 𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦 ≤ 𝑧 ) ) ∧ 𝑦 ≤ 𝐵 ) → 𝑦 ≤ 𝐵 ) | |
| 139 | 137 | leidd | ⊢ ( ( ( ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ ) ∧ 𝑒 ∈ ℝ+ ) ∧ ( 𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦 ≤ 𝑧 ) ) ∧ 𝑦 ≤ 𝐵 ) → 𝑧 ≤ 𝑧 ) |
| 140 | iccss | ⊢ ( ( ( 𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ) ∧ ( 𝑦 ≤ 𝐵 ∧ 𝑧 ≤ 𝑧 ) ) → ( 𝐵 [,] 𝑧 ) ⊆ ( 𝑦 [,] 𝑧 ) ) | |
| 141 | 136 137 138 139 140 | syl22anc | ⊢ ( ( ( ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ ) ∧ 𝑒 ∈ ℝ+ ) ∧ ( 𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦 ≤ 𝑧 ) ) ∧ 𝑦 ≤ 𝐵 ) → ( 𝐵 [,] 𝑧 ) ⊆ ( 𝑦 [,] 𝑧 ) ) |
| 142 | ssun4 | ⊢ ( ( 𝐵 [,] 𝑧 ) ⊆ ( 𝑦 [,] 𝑧 ) → ( 𝐵 [,] 𝑧 ) ⊆ ( ( 𝐵 [,] 𝑦 ) ∪ ( 𝑦 [,] 𝑧 ) ) ) | |
| 143 | 141 142 | syl | ⊢ ( ( ( ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ ) ∧ 𝑒 ∈ ℝ+ ) ∧ ( 𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦 ≤ 𝑧 ) ) ∧ 𝑦 ≤ 𝐵 ) → ( 𝐵 [,] 𝑧 ) ⊆ ( ( 𝐵 [,] 𝑦 ) ∪ ( 𝑦 [,] 𝑧 ) ) ) |
| 144 | 70 78 135 143 | lecasei | ⊢ ( ( ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ ) ∧ 𝑒 ∈ ℝ+ ) ∧ ( 𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦 ≤ 𝑧 ) ) → ( 𝐵 [,] 𝑧 ) ⊆ ( ( 𝐵 [,] 𝑦 ) ∪ ( 𝑦 [,] 𝑧 ) ) ) |
| 145 | sslin | ⊢ ( ( 𝐵 [,] 𝑧 ) ⊆ ( ( 𝐵 [,] 𝑦 ) ∪ ( 𝑦 [,] 𝑧 ) ) → ( 𝐴 ∩ ( 𝐵 [,] 𝑧 ) ) ⊆ ( 𝐴 ∩ ( ( 𝐵 [,] 𝑦 ) ∪ ( 𝑦 [,] 𝑧 ) ) ) ) | |
| 146 | 144 145 | syl | ⊢ ( ( ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ ) ∧ 𝑒 ∈ ℝ+ ) ∧ ( 𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦 ≤ 𝑧 ) ) → ( 𝐴 ∩ ( 𝐵 [,] 𝑧 ) ) ⊆ ( 𝐴 ∩ ( ( 𝐵 [,] 𝑦 ) ∪ ( 𝑦 [,] 𝑧 ) ) ) ) |
| 147 | indi | ⊢ ( 𝐴 ∩ ( ( 𝐵 [,] 𝑦 ) ∪ ( 𝑦 [,] 𝑧 ) ) ) = ( ( 𝐴 ∩ ( 𝐵 [,] 𝑦 ) ) ∪ ( 𝐴 ∩ ( 𝑦 [,] 𝑧 ) ) ) | |
| 148 | inss2 | ⊢ ( 𝐴 ∩ ( 𝑦 [,] 𝑧 ) ) ⊆ ( 𝑦 [,] 𝑧 ) | |
| 149 | unss2 | ⊢ ( ( 𝐴 ∩ ( 𝑦 [,] 𝑧 ) ) ⊆ ( 𝑦 [,] 𝑧 ) → ( ( 𝐴 ∩ ( 𝐵 [,] 𝑦 ) ) ∪ ( 𝐴 ∩ ( 𝑦 [,] 𝑧 ) ) ) ⊆ ( ( 𝐴 ∩ ( 𝐵 [,] 𝑦 ) ) ∪ ( 𝑦 [,] 𝑧 ) ) ) | |
| 150 | 148 149 | ax-mp | ⊢ ( ( 𝐴 ∩ ( 𝐵 [,] 𝑦 ) ) ∪ ( 𝐴 ∩ ( 𝑦 [,] 𝑧 ) ) ) ⊆ ( ( 𝐴 ∩ ( 𝐵 [,] 𝑦 ) ) ∪ ( 𝑦 [,] 𝑧 ) ) |
| 151 | 147 150 | eqsstri | ⊢ ( 𝐴 ∩ ( ( 𝐵 [,] 𝑦 ) ∪ ( 𝑦 [,] 𝑧 ) ) ) ⊆ ( ( 𝐴 ∩ ( 𝐵 [,] 𝑦 ) ) ∪ ( 𝑦 [,] 𝑧 ) ) |
| 152 | 146 151 | sstrdi | ⊢ ( ( ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ ) ∧ 𝑒 ∈ ℝ+ ) ∧ ( 𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦 ≤ 𝑧 ) ) → ( 𝐴 ∩ ( 𝐵 [,] 𝑧 ) ) ⊆ ( ( 𝐴 ∩ ( 𝐵 [,] 𝑦 ) ) ∪ ( 𝑦 [,] 𝑧 ) ) ) |
| 153 | ovolss | ⊢ ( ( ( 𝐴 ∩ ( 𝐵 [,] 𝑧 ) ) ⊆ ( ( 𝐴 ∩ ( 𝐵 [,] 𝑦 ) ) ∪ ( 𝑦 [,] 𝑧 ) ) ∧ ( ( 𝐴 ∩ ( 𝐵 [,] 𝑦 ) ) ∪ ( 𝑦 [,] 𝑧 ) ) ⊆ ℝ ) → ( vol* ‘ ( 𝐴 ∩ ( 𝐵 [,] 𝑧 ) ) ) ≤ ( vol* ‘ ( ( 𝐴 ∩ ( 𝐵 [,] 𝑦 ) ) ∪ ( 𝑦 [,] 𝑧 ) ) ) ) | |
| 154 | 152 108 153 | syl2anc | ⊢ ( ( ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ ) ∧ 𝑒 ∈ ℝ+ ) ∧ ( 𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦 ≤ 𝑧 ) ) → ( vol* ‘ ( 𝐴 ∩ ( 𝐵 [,] 𝑧 ) ) ) ≤ ( vol* ‘ ( ( 𝐴 ∩ ( 𝐵 [,] 𝑦 ) ) ∪ ( 𝑦 [,] 𝑧 ) ) ) ) |
| 155 | 96 121 112 154 119 | letrd | ⊢ ( ( ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ ) ∧ 𝑒 ∈ ℝ+ ) ∧ ( 𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦 ≤ 𝑧 ) ) → ( vol* ‘ ( 𝐴 ∩ ( 𝐵 [,] 𝑧 ) ) ) ≤ ( ( vol* ‘ ( 𝐴 ∩ ( 𝐵 [,] 𝑦 ) ) ) + ( 𝑧 − 𝑦 ) ) ) |
| 156 | 96 110 111 | lesubadd2d | ⊢ ( ( ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ ) ∧ 𝑒 ∈ ℝ+ ) ∧ ( 𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦 ≤ 𝑧 ) ) → ( ( ( vol* ‘ ( 𝐴 ∩ ( 𝐵 [,] 𝑧 ) ) ) − ( vol* ‘ ( 𝐴 ∩ ( 𝐵 [,] 𝑦 ) ) ) ) ≤ ( 𝑧 − 𝑦 ) ↔ ( vol* ‘ ( 𝐴 ∩ ( 𝐵 [,] 𝑧 ) ) ) ≤ ( ( vol* ‘ ( 𝐴 ∩ ( 𝐵 [,] 𝑦 ) ) ) + ( 𝑧 − 𝑦 ) ) ) ) |
| 157 | 155 156 | mpbird | ⊢ ( ( ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ ) ∧ 𝑒 ∈ ℝ+ ) ∧ ( 𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦 ≤ 𝑧 ) ) → ( ( vol* ‘ ( 𝐴 ∩ ( 𝐵 [,] 𝑧 ) ) ) − ( vol* ‘ ( 𝐴 ∩ ( 𝐵 [,] 𝑦 ) ) ) ) ≤ ( 𝑧 − 𝑦 ) ) |
| 158 | 93 157 | eqbrtrd | ⊢ ( ( ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ ) ∧ 𝑒 ∈ ℝ+ ) ∧ ( 𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦 ≤ 𝑧 ) ) → ( ( 𝐹 ‘ 𝑧 ) − ( 𝐹 ‘ 𝑦 ) ) ≤ ( 𝑧 − 𝑦 ) ) |
| 159 | 95 109 | resubcld | ⊢ ( ( ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ ) ∧ 𝑒 ∈ ℝ+ ) ∧ ( 𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦 ≤ 𝑧 ) ) → ( ( 𝐹 ‘ 𝑧 ) − ( 𝐹 ‘ 𝑦 ) ) ∈ ℝ ) |
| 160 | simplr | ⊢ ( ( ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ ) ∧ 𝑒 ∈ ℝ+ ) ∧ ( 𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦 ≤ 𝑧 ) ) → 𝑒 ∈ ℝ+ ) | |
| 161 | 160 | rpred | ⊢ ( ( ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ ) ∧ 𝑒 ∈ ℝ+ ) ∧ ( 𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦 ≤ 𝑧 ) ) → 𝑒 ∈ ℝ ) |
| 162 | lelttr | ⊢ ( ( ( ( 𝐹 ‘ 𝑧 ) − ( 𝐹 ‘ 𝑦 ) ) ∈ ℝ ∧ ( 𝑧 − 𝑦 ) ∈ ℝ ∧ 𝑒 ∈ ℝ ) → ( ( ( ( 𝐹 ‘ 𝑧 ) − ( 𝐹 ‘ 𝑦 ) ) ≤ ( 𝑧 − 𝑦 ) ∧ ( 𝑧 − 𝑦 ) < 𝑒 ) → ( ( 𝐹 ‘ 𝑧 ) − ( 𝐹 ‘ 𝑦 ) ) < 𝑒 ) ) | |
| 163 | 159 111 161 162 | syl3anc | ⊢ ( ( ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ ) ∧ 𝑒 ∈ ℝ+ ) ∧ ( 𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦 ≤ 𝑧 ) ) → ( ( ( ( 𝐹 ‘ 𝑧 ) − ( 𝐹 ‘ 𝑦 ) ) ≤ ( 𝑧 − 𝑦 ) ∧ ( 𝑧 − 𝑦 ) < 𝑒 ) → ( ( 𝐹 ‘ 𝑧 ) − ( 𝐹 ‘ 𝑦 ) ) < 𝑒 ) ) |
| 164 | 158 163 | mpand | ⊢ ( ( ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ ) ∧ 𝑒 ∈ ℝ+ ) ∧ ( 𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦 ≤ 𝑧 ) ) → ( ( 𝑧 − 𝑦 ) < 𝑒 → ( ( 𝐹 ‘ 𝑧 ) − ( 𝐹 ‘ 𝑦 ) ) < 𝑒 ) ) |
| 165 | abssubge0 | ⊢ ( ( 𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦 ≤ 𝑧 ) → ( abs ‘ ( 𝑧 − 𝑦 ) ) = ( 𝑧 − 𝑦 ) ) | |
| 166 | 165 | adantl | ⊢ ( ( ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ ) ∧ 𝑒 ∈ ℝ+ ) ∧ ( 𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦 ≤ 𝑧 ) ) → ( abs ‘ ( 𝑧 − 𝑦 ) ) = ( 𝑧 − 𝑦 ) ) |
| 167 | 166 | breq1d | ⊢ ( ( ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ ) ∧ 𝑒 ∈ ℝ+ ) ∧ ( 𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦 ≤ 𝑧 ) ) → ( ( abs ‘ ( 𝑧 − 𝑦 ) ) < 𝑒 ↔ ( 𝑧 − 𝑦 ) < 𝑒 ) ) |
| 168 | ovolss | ⊢ ( ( ( 𝐴 ∩ ( 𝐵 [,] 𝑦 ) ) ⊆ ( 𝐴 ∩ ( 𝐵 [,] 𝑧 ) ) ∧ ( 𝐴 ∩ ( 𝐵 [,] 𝑧 ) ) ⊆ ℝ ) → ( vol* ‘ ( 𝐴 ∩ ( 𝐵 [,] 𝑦 ) ) ) ≤ ( vol* ‘ ( 𝐴 ∩ ( 𝐵 [,] 𝑧 ) ) ) ) | |
| 169 | 102 104 168 | syl2anc | ⊢ ( ( ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ ) ∧ 𝑒 ∈ ℝ+ ) ∧ ( 𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦 ≤ 𝑧 ) ) → ( vol* ‘ ( 𝐴 ∩ ( 𝐵 [,] 𝑦 ) ) ) ≤ ( vol* ‘ ( 𝐴 ∩ ( 𝐵 [,] 𝑧 ) ) ) ) |
| 170 | 169 92 77 | 3brtr4d | ⊢ ( ( ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ ) ∧ 𝑒 ∈ ℝ+ ) ∧ ( 𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦 ≤ 𝑧 ) ) → ( 𝐹 ‘ 𝑦 ) ≤ ( 𝐹 ‘ 𝑧 ) ) |
| 171 | 109 95 170 | abssubge0d | ⊢ ( ( ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ ) ∧ 𝑒 ∈ ℝ+ ) ∧ ( 𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦 ≤ 𝑧 ) ) → ( abs ‘ ( ( 𝐹 ‘ 𝑧 ) − ( 𝐹 ‘ 𝑦 ) ) ) = ( ( 𝐹 ‘ 𝑧 ) − ( 𝐹 ‘ 𝑦 ) ) ) |
| 172 | 171 | breq1d | ⊢ ( ( ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ ) ∧ 𝑒 ∈ ℝ+ ) ∧ ( 𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦 ≤ 𝑧 ) ) → ( ( abs ‘ ( ( 𝐹 ‘ 𝑧 ) − ( 𝐹 ‘ 𝑦 ) ) ) < 𝑒 ↔ ( ( 𝐹 ‘ 𝑧 ) − ( 𝐹 ‘ 𝑦 ) ) < 𝑒 ) ) |
| 173 | 164 167 172 | 3imtr4d | ⊢ ( ( ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ ) ∧ 𝑒 ∈ ℝ+ ) ∧ ( 𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦 ≤ 𝑧 ) ) → ( ( abs ‘ ( 𝑧 − 𝑦 ) ) < 𝑒 → ( abs ‘ ( ( 𝐹 ‘ 𝑧 ) − ( 𝐹 ‘ 𝑦 ) ) ) < 𝑒 ) ) |
| 174 | 31 41 42 60 173 | wlogle | ⊢ ( ( ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ ) ∧ 𝑒 ∈ ℝ+ ) ∧ ( 𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ) ) → ( ( abs ‘ ( 𝑧 − 𝑦 ) ) < 𝑒 → ( abs ‘ ( ( 𝐹 ‘ 𝑧 ) − ( 𝐹 ‘ 𝑦 ) ) ) < 𝑒 ) ) |
| 175 | 174 | anassrs | ⊢ ( ( ( ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ ) ∧ 𝑒 ∈ ℝ+ ) ∧ 𝑦 ∈ ℝ ) ∧ 𝑧 ∈ ℝ ) → ( ( abs ‘ ( 𝑧 − 𝑦 ) ) < 𝑒 → ( abs ‘ ( ( 𝐹 ‘ 𝑧 ) − ( 𝐹 ‘ 𝑦 ) ) ) < 𝑒 ) ) |
| 176 | 175 | ralrimiva | ⊢ ( ( ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ ) ∧ 𝑒 ∈ ℝ+ ) ∧ 𝑦 ∈ ℝ ) → ∀ 𝑧 ∈ ℝ ( ( abs ‘ ( 𝑧 − 𝑦 ) ) < 𝑒 → ( abs ‘ ( ( 𝐹 ‘ 𝑧 ) − ( 𝐹 ‘ 𝑦 ) ) ) < 𝑒 ) ) |
| 177 | 176 | anasss | ⊢ ( ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ ) ∧ ( 𝑒 ∈ ℝ+ ∧ 𝑦 ∈ ℝ ) ) → ∀ 𝑧 ∈ ℝ ( ( abs ‘ ( 𝑧 − 𝑦 ) ) < 𝑒 → ( abs ‘ ( ( 𝐹 ‘ 𝑧 ) − ( 𝐹 ‘ 𝑦 ) ) ) < 𝑒 ) ) |
| 178 | 177 | ancom2s | ⊢ ( ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ ) ∧ ( 𝑦 ∈ ℝ ∧ 𝑒 ∈ ℝ+ ) ) → ∀ 𝑧 ∈ ℝ ( ( abs ‘ ( 𝑧 − 𝑦 ) ) < 𝑒 → ( abs ‘ ( ( 𝐹 ‘ 𝑧 ) − ( 𝐹 ‘ 𝑦 ) ) ) < 𝑒 ) ) |
| 179 | breq2 | ⊢ ( 𝑑 = 𝑒 → ( ( abs ‘ ( 𝑧 − 𝑦 ) ) < 𝑑 ↔ ( abs ‘ ( 𝑧 − 𝑦 ) ) < 𝑒 ) ) | |
| 180 | 179 | rspceaimv | ⊢ ( ( 𝑒 ∈ ℝ+ ∧ ∀ 𝑧 ∈ ℝ ( ( abs ‘ ( 𝑧 − 𝑦 ) ) < 𝑒 → ( abs ‘ ( ( 𝐹 ‘ 𝑧 ) − ( 𝐹 ‘ 𝑦 ) ) ) < 𝑒 ) ) → ∃ 𝑑 ∈ ℝ+ ∀ 𝑧 ∈ ℝ ( ( abs ‘ ( 𝑧 − 𝑦 ) ) < 𝑑 → ( abs ‘ ( ( 𝐹 ‘ 𝑧 ) − ( 𝐹 ‘ 𝑦 ) ) ) < 𝑒 ) ) |
| 181 | 21 178 180 | syl2anc | ⊢ ( ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ ) ∧ ( 𝑦 ∈ ℝ ∧ 𝑒 ∈ ℝ+ ) ) → ∃ 𝑑 ∈ ℝ+ ∀ 𝑧 ∈ ℝ ( ( abs ‘ ( 𝑧 − 𝑦 ) ) < 𝑑 → ( abs ‘ ( ( 𝐹 ‘ 𝑧 ) − ( 𝐹 ‘ 𝑦 ) ) ) < 𝑒 ) ) |
| 182 | 181 | ralrimivva | ⊢ ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ ) → ∀ 𝑦 ∈ ℝ ∀ 𝑒 ∈ ℝ+ ∃ 𝑑 ∈ ℝ+ ∀ 𝑧 ∈ ℝ ( ( abs ‘ ( 𝑧 − 𝑦 ) ) < 𝑑 → ( abs ‘ ( ( 𝐹 ‘ 𝑧 ) − ( 𝐹 ‘ 𝑦 ) ) ) < 𝑒 ) ) |
| 183 | ax-resscn | ⊢ ℝ ⊆ ℂ | |
| 184 | elcncf2 | ⊢ ( ( ℝ ⊆ ℂ ∧ ℝ ⊆ ℂ ) → ( 𝐹 ∈ ( ℝ –cn→ ℝ ) ↔ ( 𝐹 : ℝ ⟶ ℝ ∧ ∀ 𝑦 ∈ ℝ ∀ 𝑒 ∈ ℝ+ ∃ 𝑑 ∈ ℝ+ ∀ 𝑧 ∈ ℝ ( ( abs ‘ ( 𝑧 − 𝑦 ) ) < 𝑑 → ( abs ‘ ( ( 𝐹 ‘ 𝑧 ) − ( 𝐹 ‘ 𝑦 ) ) ) < 𝑒 ) ) ) ) | |
| 185 | 183 183 184 | mp2an | ⊢ ( 𝐹 ∈ ( ℝ –cn→ ℝ ) ↔ ( 𝐹 : ℝ ⟶ ℝ ∧ ∀ 𝑦 ∈ ℝ ∀ 𝑒 ∈ ℝ+ ∃ 𝑑 ∈ ℝ+ ∀ 𝑧 ∈ ℝ ( ( abs ‘ ( 𝑧 − 𝑦 ) ) < 𝑑 → ( abs ‘ ( ( 𝐹 ‘ 𝑧 ) − ( 𝐹 ‘ 𝑦 ) ) ) < 𝑒 ) ) ) |
| 186 | 20 182 185 | sylanbrc | ⊢ ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ ) → 𝐹 ∈ ( ℝ –cn→ ℝ ) ) |