This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The Intermediate Value Theorem for the Lebesgue volume function. For any positive B <_ ( volA ) , there is a measurable subset of A whose volume is B . (Contributed by Mario Carneiro, 30-Aug-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | volivth | |- ( ( A e. dom vol /\ B e. ( 0 [,] ( vol ` A ) ) ) -> E. x e. dom vol ( x C_ A /\ ( vol ` x ) = B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpll | |- ( ( ( A e. dom vol /\ B e. ( 0 [,] ( vol ` A ) ) ) /\ B < ( vol ` A ) ) -> A e. dom vol ) |
|
| 2 | mnfxr | |- -oo e. RR* |
|
| 3 | 2 | a1i | |- ( ( ( A e. dom vol /\ B e. ( 0 [,] ( vol ` A ) ) ) /\ B < ( vol ` A ) ) -> -oo e. RR* ) |
| 4 | iccssxr | |- ( 0 [,] ( vol ` A ) ) C_ RR* |
|
| 5 | simpr | |- ( ( A e. dom vol /\ B e. ( 0 [,] ( vol ` A ) ) ) -> B e. ( 0 [,] ( vol ` A ) ) ) |
|
| 6 | 4 5 | sselid | |- ( ( A e. dom vol /\ B e. ( 0 [,] ( vol ` A ) ) ) -> B e. RR* ) |
| 7 | 6 | adantr | |- ( ( ( A e. dom vol /\ B e. ( 0 [,] ( vol ` A ) ) ) /\ B < ( vol ` A ) ) -> B e. RR* ) |
| 8 | iccssxr | |- ( 0 [,] +oo ) C_ RR* |
|
| 9 | volf | |- vol : dom vol --> ( 0 [,] +oo ) |
|
| 10 | 9 | ffvelcdmi | |- ( A e. dom vol -> ( vol ` A ) e. ( 0 [,] +oo ) ) |
| 11 | 8 10 | sselid | |- ( A e. dom vol -> ( vol ` A ) e. RR* ) |
| 12 | 11 | adantr | |- ( ( A e. dom vol /\ B e. ( 0 [,] ( vol ` A ) ) ) -> ( vol ` A ) e. RR* ) |
| 13 | 12 | adantr | |- ( ( ( A e. dom vol /\ B e. ( 0 [,] ( vol ` A ) ) ) /\ B < ( vol ` A ) ) -> ( vol ` A ) e. RR* ) |
| 14 | 0xr | |- 0 e. RR* |
|
| 15 | elicc1 | |- ( ( 0 e. RR* /\ ( vol ` A ) e. RR* ) -> ( B e. ( 0 [,] ( vol ` A ) ) <-> ( B e. RR* /\ 0 <_ B /\ B <_ ( vol ` A ) ) ) ) |
|
| 16 | 14 12 15 | sylancr | |- ( ( A e. dom vol /\ B e. ( 0 [,] ( vol ` A ) ) ) -> ( B e. ( 0 [,] ( vol ` A ) ) <-> ( B e. RR* /\ 0 <_ B /\ B <_ ( vol ` A ) ) ) ) |
| 17 | 5 16 | mpbid | |- ( ( A e. dom vol /\ B e. ( 0 [,] ( vol ` A ) ) ) -> ( B e. RR* /\ 0 <_ B /\ B <_ ( vol ` A ) ) ) |
| 18 | 17 | simp2d | |- ( ( A e. dom vol /\ B e. ( 0 [,] ( vol ` A ) ) ) -> 0 <_ B ) |
| 19 | 18 | adantr | |- ( ( ( A e. dom vol /\ B e. ( 0 [,] ( vol ` A ) ) ) /\ B < ( vol ` A ) ) -> 0 <_ B ) |
| 20 | mnflt0 | |- -oo < 0 |
|
| 21 | xrltletr | |- ( ( -oo e. RR* /\ 0 e. RR* /\ B e. RR* ) -> ( ( -oo < 0 /\ 0 <_ B ) -> -oo < B ) ) |
|
| 22 | 20 21 | mpani | |- ( ( -oo e. RR* /\ 0 e. RR* /\ B e. RR* ) -> ( 0 <_ B -> -oo < B ) ) |
| 23 | 2 14 22 | mp3an12 | |- ( B e. RR* -> ( 0 <_ B -> -oo < B ) ) |
| 24 | 7 19 23 | sylc | |- ( ( ( A e. dom vol /\ B e. ( 0 [,] ( vol ` A ) ) ) /\ B < ( vol ` A ) ) -> -oo < B ) |
| 25 | simpr | |- ( ( ( A e. dom vol /\ B e. ( 0 [,] ( vol ` A ) ) ) /\ B < ( vol ` A ) ) -> B < ( vol ` A ) ) |
|
| 26 | xrre2 | |- ( ( ( -oo e. RR* /\ B e. RR* /\ ( vol ` A ) e. RR* ) /\ ( -oo < B /\ B < ( vol ` A ) ) ) -> B e. RR ) |
|
| 27 | 3 7 13 24 25 26 | syl32anc | |- ( ( ( A e. dom vol /\ B e. ( 0 [,] ( vol ` A ) ) ) /\ B < ( vol ` A ) ) -> B e. RR ) |
| 28 | volsup2 | |- ( ( A e. dom vol /\ B e. RR /\ B < ( vol ` A ) ) -> E. n e. NN B < ( vol ` ( A i^i ( -u n [,] n ) ) ) ) |
|
| 29 | 1 27 25 28 | syl3anc | |- ( ( ( A e. dom vol /\ B e. ( 0 [,] ( vol ` A ) ) ) /\ B < ( vol ` A ) ) -> E. n e. NN B < ( vol ` ( A i^i ( -u n [,] n ) ) ) ) |
| 30 | nnre | |- ( n e. NN -> n e. RR ) |
|
| 31 | 30 | ad2antrl | |- ( ( ( ( A e. dom vol /\ B e. ( 0 [,] ( vol ` A ) ) ) /\ B < ( vol ` A ) ) /\ ( n e. NN /\ B < ( vol ` ( A i^i ( -u n [,] n ) ) ) ) ) -> n e. RR ) |
| 32 | 31 | renegcld | |- ( ( ( ( A e. dom vol /\ B e. ( 0 [,] ( vol ` A ) ) ) /\ B < ( vol ` A ) ) /\ ( n e. NN /\ B < ( vol ` ( A i^i ( -u n [,] n ) ) ) ) ) -> -u n e. RR ) |
| 33 | 27 | adantr | |- ( ( ( ( A e. dom vol /\ B e. ( 0 [,] ( vol ` A ) ) ) /\ B < ( vol ` A ) ) /\ ( n e. NN /\ B < ( vol ` ( A i^i ( -u n [,] n ) ) ) ) ) -> B e. RR ) |
| 34 | 0red | |- ( ( ( ( A e. dom vol /\ B e. ( 0 [,] ( vol ` A ) ) ) /\ B < ( vol ` A ) ) /\ ( n e. NN /\ B < ( vol ` ( A i^i ( -u n [,] n ) ) ) ) ) -> 0 e. RR ) |
|
| 35 | nngt0 | |- ( n e. NN -> 0 < n ) |
|
| 36 | 35 | ad2antrl | |- ( ( ( ( A e. dom vol /\ B e. ( 0 [,] ( vol ` A ) ) ) /\ B < ( vol ` A ) ) /\ ( n e. NN /\ B < ( vol ` ( A i^i ( -u n [,] n ) ) ) ) ) -> 0 < n ) |
| 37 | 31 | lt0neg2d | |- ( ( ( ( A e. dom vol /\ B e. ( 0 [,] ( vol ` A ) ) ) /\ B < ( vol ` A ) ) /\ ( n e. NN /\ B < ( vol ` ( A i^i ( -u n [,] n ) ) ) ) ) -> ( 0 < n <-> -u n < 0 ) ) |
| 38 | 36 37 | mpbid | |- ( ( ( ( A e. dom vol /\ B e. ( 0 [,] ( vol ` A ) ) ) /\ B < ( vol ` A ) ) /\ ( n e. NN /\ B < ( vol ` ( A i^i ( -u n [,] n ) ) ) ) ) -> -u n < 0 ) |
| 39 | 32 34 31 38 36 | lttrd | |- ( ( ( ( A e. dom vol /\ B e. ( 0 [,] ( vol ` A ) ) ) /\ B < ( vol ` A ) ) /\ ( n e. NN /\ B < ( vol ` ( A i^i ( -u n [,] n ) ) ) ) ) -> -u n < n ) |
| 40 | iccssre | |- ( ( -u n e. RR /\ n e. RR ) -> ( -u n [,] n ) C_ RR ) |
|
| 41 | 32 31 40 | syl2anc | |- ( ( ( ( A e. dom vol /\ B e. ( 0 [,] ( vol ` A ) ) ) /\ B < ( vol ` A ) ) /\ ( n e. NN /\ B < ( vol ` ( A i^i ( -u n [,] n ) ) ) ) ) -> ( -u n [,] n ) C_ RR ) |
| 42 | ax-resscn | |- RR C_ CC |
|
| 43 | ssid | |- CC C_ CC |
|
| 44 | cncfss | |- ( ( RR C_ CC /\ CC C_ CC ) -> ( RR -cn-> RR ) C_ ( RR -cn-> CC ) ) |
|
| 45 | 42 43 44 | mp2an | |- ( RR -cn-> RR ) C_ ( RR -cn-> CC ) |
| 46 | 1 | adantr | |- ( ( ( ( A e. dom vol /\ B e. ( 0 [,] ( vol ` A ) ) ) /\ B < ( vol ` A ) ) /\ ( n e. NN /\ B < ( vol ` ( A i^i ( -u n [,] n ) ) ) ) ) -> A e. dom vol ) |
| 47 | eqid | |- ( y e. RR |-> ( vol ` ( A i^i ( -u n [,] y ) ) ) ) = ( y e. RR |-> ( vol ` ( A i^i ( -u n [,] y ) ) ) ) |
|
| 48 | 47 | volcn | |- ( ( A e. dom vol /\ -u n e. RR ) -> ( y e. RR |-> ( vol ` ( A i^i ( -u n [,] y ) ) ) ) e. ( RR -cn-> RR ) ) |
| 49 | 46 32 48 | syl2anc | |- ( ( ( ( A e. dom vol /\ B e. ( 0 [,] ( vol ` A ) ) ) /\ B < ( vol ` A ) ) /\ ( n e. NN /\ B < ( vol ` ( A i^i ( -u n [,] n ) ) ) ) ) -> ( y e. RR |-> ( vol ` ( A i^i ( -u n [,] y ) ) ) ) e. ( RR -cn-> RR ) ) |
| 50 | 45 49 | sselid | |- ( ( ( ( A e. dom vol /\ B e. ( 0 [,] ( vol ` A ) ) ) /\ B < ( vol ` A ) ) /\ ( n e. NN /\ B < ( vol ` ( A i^i ( -u n [,] n ) ) ) ) ) -> ( y e. RR |-> ( vol ` ( A i^i ( -u n [,] y ) ) ) ) e. ( RR -cn-> CC ) ) |
| 51 | 41 | sselda | |- ( ( ( ( ( A e. dom vol /\ B e. ( 0 [,] ( vol ` A ) ) ) /\ B < ( vol ` A ) ) /\ ( n e. NN /\ B < ( vol ` ( A i^i ( -u n [,] n ) ) ) ) ) /\ u e. ( -u n [,] n ) ) -> u e. RR ) |
| 52 | cncff | |- ( ( y e. RR |-> ( vol ` ( A i^i ( -u n [,] y ) ) ) ) e. ( RR -cn-> RR ) -> ( y e. RR |-> ( vol ` ( A i^i ( -u n [,] y ) ) ) ) : RR --> RR ) |
|
| 53 | 49 52 | syl | |- ( ( ( ( A e. dom vol /\ B e. ( 0 [,] ( vol ` A ) ) ) /\ B < ( vol ` A ) ) /\ ( n e. NN /\ B < ( vol ` ( A i^i ( -u n [,] n ) ) ) ) ) -> ( y e. RR |-> ( vol ` ( A i^i ( -u n [,] y ) ) ) ) : RR --> RR ) |
| 54 | 53 | ffvelcdmda | |- ( ( ( ( ( A e. dom vol /\ B e. ( 0 [,] ( vol ` A ) ) ) /\ B < ( vol ` A ) ) /\ ( n e. NN /\ B < ( vol ` ( A i^i ( -u n [,] n ) ) ) ) ) /\ u e. RR ) -> ( ( y e. RR |-> ( vol ` ( A i^i ( -u n [,] y ) ) ) ) ` u ) e. RR ) |
| 55 | 51 54 | syldan | |- ( ( ( ( ( A e. dom vol /\ B e. ( 0 [,] ( vol ` A ) ) ) /\ B < ( vol ` A ) ) /\ ( n e. NN /\ B < ( vol ` ( A i^i ( -u n [,] n ) ) ) ) ) /\ u e. ( -u n [,] n ) ) -> ( ( y e. RR |-> ( vol ` ( A i^i ( -u n [,] y ) ) ) ) ` u ) e. RR ) |
| 56 | oveq2 | |- ( y = -u n -> ( -u n [,] y ) = ( -u n [,] -u n ) ) |
|
| 57 | 56 | ineq2d | |- ( y = -u n -> ( A i^i ( -u n [,] y ) ) = ( A i^i ( -u n [,] -u n ) ) ) |
| 58 | 57 | fveq2d | |- ( y = -u n -> ( vol ` ( A i^i ( -u n [,] y ) ) ) = ( vol ` ( A i^i ( -u n [,] -u n ) ) ) ) |
| 59 | fvex | |- ( vol ` ( A i^i ( -u n [,] -u n ) ) ) e. _V |
|
| 60 | 58 47 59 | fvmpt | |- ( -u n e. RR -> ( ( y e. RR |-> ( vol ` ( A i^i ( -u n [,] y ) ) ) ) ` -u n ) = ( vol ` ( A i^i ( -u n [,] -u n ) ) ) ) |
| 61 | 32 60 | syl | |- ( ( ( ( A e. dom vol /\ B e. ( 0 [,] ( vol ` A ) ) ) /\ B < ( vol ` A ) ) /\ ( n e. NN /\ B < ( vol ` ( A i^i ( -u n [,] n ) ) ) ) ) -> ( ( y e. RR |-> ( vol ` ( A i^i ( -u n [,] y ) ) ) ) ` -u n ) = ( vol ` ( A i^i ( -u n [,] -u n ) ) ) ) |
| 62 | inss2 | |- ( A i^i ( -u n [,] -u n ) ) C_ ( -u n [,] -u n ) |
|
| 63 | 32 | rexrd | |- ( ( ( ( A e. dom vol /\ B e. ( 0 [,] ( vol ` A ) ) ) /\ B < ( vol ` A ) ) /\ ( n e. NN /\ B < ( vol ` ( A i^i ( -u n [,] n ) ) ) ) ) -> -u n e. RR* ) |
| 64 | iccid | |- ( -u n e. RR* -> ( -u n [,] -u n ) = { -u n } ) |
|
| 65 | 63 64 | syl | |- ( ( ( ( A e. dom vol /\ B e. ( 0 [,] ( vol ` A ) ) ) /\ B < ( vol ` A ) ) /\ ( n e. NN /\ B < ( vol ` ( A i^i ( -u n [,] n ) ) ) ) ) -> ( -u n [,] -u n ) = { -u n } ) |
| 66 | 62 65 | sseqtrid | |- ( ( ( ( A e. dom vol /\ B e. ( 0 [,] ( vol ` A ) ) ) /\ B < ( vol ` A ) ) /\ ( n e. NN /\ B < ( vol ` ( A i^i ( -u n [,] n ) ) ) ) ) -> ( A i^i ( -u n [,] -u n ) ) C_ { -u n } ) |
| 67 | 32 | snssd | |- ( ( ( ( A e. dom vol /\ B e. ( 0 [,] ( vol ` A ) ) ) /\ B < ( vol ` A ) ) /\ ( n e. NN /\ B < ( vol ` ( A i^i ( -u n [,] n ) ) ) ) ) -> { -u n } C_ RR ) |
| 68 | 66 67 | sstrd | |- ( ( ( ( A e. dom vol /\ B e. ( 0 [,] ( vol ` A ) ) ) /\ B < ( vol ` A ) ) /\ ( n e. NN /\ B < ( vol ` ( A i^i ( -u n [,] n ) ) ) ) ) -> ( A i^i ( -u n [,] -u n ) ) C_ RR ) |
| 69 | ovolsn | |- ( -u n e. RR -> ( vol* ` { -u n } ) = 0 ) |
|
| 70 | 32 69 | syl | |- ( ( ( ( A e. dom vol /\ B e. ( 0 [,] ( vol ` A ) ) ) /\ B < ( vol ` A ) ) /\ ( n e. NN /\ B < ( vol ` ( A i^i ( -u n [,] n ) ) ) ) ) -> ( vol* ` { -u n } ) = 0 ) |
| 71 | ovolssnul | |- ( ( ( A i^i ( -u n [,] -u n ) ) C_ { -u n } /\ { -u n } C_ RR /\ ( vol* ` { -u n } ) = 0 ) -> ( vol* ` ( A i^i ( -u n [,] -u n ) ) ) = 0 ) |
|
| 72 | 66 67 70 71 | syl3anc | |- ( ( ( ( A e. dom vol /\ B e. ( 0 [,] ( vol ` A ) ) ) /\ B < ( vol ` A ) ) /\ ( n e. NN /\ B < ( vol ` ( A i^i ( -u n [,] n ) ) ) ) ) -> ( vol* ` ( A i^i ( -u n [,] -u n ) ) ) = 0 ) |
| 73 | nulmbl | |- ( ( ( A i^i ( -u n [,] -u n ) ) C_ RR /\ ( vol* ` ( A i^i ( -u n [,] -u n ) ) ) = 0 ) -> ( A i^i ( -u n [,] -u n ) ) e. dom vol ) |
|
| 74 | 68 72 73 | syl2anc | |- ( ( ( ( A e. dom vol /\ B e. ( 0 [,] ( vol ` A ) ) ) /\ B < ( vol ` A ) ) /\ ( n e. NN /\ B < ( vol ` ( A i^i ( -u n [,] n ) ) ) ) ) -> ( A i^i ( -u n [,] -u n ) ) e. dom vol ) |
| 75 | mblvol | |- ( ( A i^i ( -u n [,] -u n ) ) e. dom vol -> ( vol ` ( A i^i ( -u n [,] -u n ) ) ) = ( vol* ` ( A i^i ( -u n [,] -u n ) ) ) ) |
|
| 76 | 74 75 | syl | |- ( ( ( ( A e. dom vol /\ B e. ( 0 [,] ( vol ` A ) ) ) /\ B < ( vol ` A ) ) /\ ( n e. NN /\ B < ( vol ` ( A i^i ( -u n [,] n ) ) ) ) ) -> ( vol ` ( A i^i ( -u n [,] -u n ) ) ) = ( vol* ` ( A i^i ( -u n [,] -u n ) ) ) ) |
| 77 | 61 76 72 | 3eqtrd | |- ( ( ( ( A e. dom vol /\ B e. ( 0 [,] ( vol ` A ) ) ) /\ B < ( vol ` A ) ) /\ ( n e. NN /\ B < ( vol ` ( A i^i ( -u n [,] n ) ) ) ) ) -> ( ( y e. RR |-> ( vol ` ( A i^i ( -u n [,] y ) ) ) ) ` -u n ) = 0 ) |
| 78 | 19 | adantr | |- ( ( ( ( A e. dom vol /\ B e. ( 0 [,] ( vol ` A ) ) ) /\ B < ( vol ` A ) ) /\ ( n e. NN /\ B < ( vol ` ( A i^i ( -u n [,] n ) ) ) ) ) -> 0 <_ B ) |
| 79 | 77 78 | eqbrtrd | |- ( ( ( ( A e. dom vol /\ B e. ( 0 [,] ( vol ` A ) ) ) /\ B < ( vol ` A ) ) /\ ( n e. NN /\ B < ( vol ` ( A i^i ( -u n [,] n ) ) ) ) ) -> ( ( y e. RR |-> ( vol ` ( A i^i ( -u n [,] y ) ) ) ) ` -u n ) <_ B ) |
| 80 | 7 | adantr | |- ( ( ( ( A e. dom vol /\ B e. ( 0 [,] ( vol ` A ) ) ) /\ B < ( vol ` A ) ) /\ ( n e. NN /\ B < ( vol ` ( A i^i ( -u n [,] n ) ) ) ) ) -> B e. RR* ) |
| 81 | iccmbl | |- ( ( -u n e. RR /\ n e. RR ) -> ( -u n [,] n ) e. dom vol ) |
|
| 82 | 32 31 81 | syl2anc | |- ( ( ( ( A e. dom vol /\ B e. ( 0 [,] ( vol ` A ) ) ) /\ B < ( vol ` A ) ) /\ ( n e. NN /\ B < ( vol ` ( A i^i ( -u n [,] n ) ) ) ) ) -> ( -u n [,] n ) e. dom vol ) |
| 83 | inmbl | |- ( ( A e. dom vol /\ ( -u n [,] n ) e. dom vol ) -> ( A i^i ( -u n [,] n ) ) e. dom vol ) |
|
| 84 | 46 82 83 | syl2anc | |- ( ( ( ( A e. dom vol /\ B e. ( 0 [,] ( vol ` A ) ) ) /\ B < ( vol ` A ) ) /\ ( n e. NN /\ B < ( vol ` ( A i^i ( -u n [,] n ) ) ) ) ) -> ( A i^i ( -u n [,] n ) ) e. dom vol ) |
| 85 | 9 | ffvelcdmi | |- ( ( A i^i ( -u n [,] n ) ) e. dom vol -> ( vol ` ( A i^i ( -u n [,] n ) ) ) e. ( 0 [,] +oo ) ) |
| 86 | 8 85 | sselid | |- ( ( A i^i ( -u n [,] n ) ) e. dom vol -> ( vol ` ( A i^i ( -u n [,] n ) ) ) e. RR* ) |
| 87 | 84 86 | syl | |- ( ( ( ( A e. dom vol /\ B e. ( 0 [,] ( vol ` A ) ) ) /\ B < ( vol ` A ) ) /\ ( n e. NN /\ B < ( vol ` ( A i^i ( -u n [,] n ) ) ) ) ) -> ( vol ` ( A i^i ( -u n [,] n ) ) ) e. RR* ) |
| 88 | simprr | |- ( ( ( ( A e. dom vol /\ B e. ( 0 [,] ( vol ` A ) ) ) /\ B < ( vol ` A ) ) /\ ( n e. NN /\ B < ( vol ` ( A i^i ( -u n [,] n ) ) ) ) ) -> B < ( vol ` ( A i^i ( -u n [,] n ) ) ) ) |
|
| 89 | 80 87 88 | xrltled | |- ( ( ( ( A e. dom vol /\ B e. ( 0 [,] ( vol ` A ) ) ) /\ B < ( vol ` A ) ) /\ ( n e. NN /\ B < ( vol ` ( A i^i ( -u n [,] n ) ) ) ) ) -> B <_ ( vol ` ( A i^i ( -u n [,] n ) ) ) ) |
| 90 | oveq2 | |- ( y = n -> ( -u n [,] y ) = ( -u n [,] n ) ) |
|
| 91 | 90 | ineq2d | |- ( y = n -> ( A i^i ( -u n [,] y ) ) = ( A i^i ( -u n [,] n ) ) ) |
| 92 | 91 | fveq2d | |- ( y = n -> ( vol ` ( A i^i ( -u n [,] y ) ) ) = ( vol ` ( A i^i ( -u n [,] n ) ) ) ) |
| 93 | fvex | |- ( vol ` ( A i^i ( -u n [,] n ) ) ) e. _V |
|
| 94 | 92 47 93 | fvmpt | |- ( n e. RR -> ( ( y e. RR |-> ( vol ` ( A i^i ( -u n [,] y ) ) ) ) ` n ) = ( vol ` ( A i^i ( -u n [,] n ) ) ) ) |
| 95 | 31 94 | syl | |- ( ( ( ( A e. dom vol /\ B e. ( 0 [,] ( vol ` A ) ) ) /\ B < ( vol ` A ) ) /\ ( n e. NN /\ B < ( vol ` ( A i^i ( -u n [,] n ) ) ) ) ) -> ( ( y e. RR |-> ( vol ` ( A i^i ( -u n [,] y ) ) ) ) ` n ) = ( vol ` ( A i^i ( -u n [,] n ) ) ) ) |
| 96 | 89 95 | breqtrrd | |- ( ( ( ( A e. dom vol /\ B e. ( 0 [,] ( vol ` A ) ) ) /\ B < ( vol ` A ) ) /\ ( n e. NN /\ B < ( vol ` ( A i^i ( -u n [,] n ) ) ) ) ) -> B <_ ( ( y e. RR |-> ( vol ` ( A i^i ( -u n [,] y ) ) ) ) ` n ) ) |
| 97 | 79 96 | jca | |- ( ( ( ( A e. dom vol /\ B e. ( 0 [,] ( vol ` A ) ) ) /\ B < ( vol ` A ) ) /\ ( n e. NN /\ B < ( vol ` ( A i^i ( -u n [,] n ) ) ) ) ) -> ( ( ( y e. RR |-> ( vol ` ( A i^i ( -u n [,] y ) ) ) ) ` -u n ) <_ B /\ B <_ ( ( y e. RR |-> ( vol ` ( A i^i ( -u n [,] y ) ) ) ) ` n ) ) ) |
| 98 | 32 31 33 39 41 50 55 97 | ivthle | |- ( ( ( ( A e. dom vol /\ B e. ( 0 [,] ( vol ` A ) ) ) /\ B < ( vol ` A ) ) /\ ( n e. NN /\ B < ( vol ` ( A i^i ( -u n [,] n ) ) ) ) ) -> E. z e. ( -u n [,] n ) ( ( y e. RR |-> ( vol ` ( A i^i ( -u n [,] y ) ) ) ) ` z ) = B ) |
| 99 | 41 | sselda | |- ( ( ( ( ( A e. dom vol /\ B e. ( 0 [,] ( vol ` A ) ) ) /\ B < ( vol ` A ) ) /\ ( n e. NN /\ B < ( vol ` ( A i^i ( -u n [,] n ) ) ) ) ) /\ z e. ( -u n [,] n ) ) -> z e. RR ) |
| 100 | oveq2 | |- ( y = z -> ( -u n [,] y ) = ( -u n [,] z ) ) |
|
| 101 | 100 | ineq2d | |- ( y = z -> ( A i^i ( -u n [,] y ) ) = ( A i^i ( -u n [,] z ) ) ) |
| 102 | 101 | fveq2d | |- ( y = z -> ( vol ` ( A i^i ( -u n [,] y ) ) ) = ( vol ` ( A i^i ( -u n [,] z ) ) ) ) |
| 103 | fvex | |- ( vol ` ( A i^i ( -u n [,] z ) ) ) e. _V |
|
| 104 | 102 47 103 | fvmpt | |- ( z e. RR -> ( ( y e. RR |-> ( vol ` ( A i^i ( -u n [,] y ) ) ) ) ` z ) = ( vol ` ( A i^i ( -u n [,] z ) ) ) ) |
| 105 | 99 104 | syl | |- ( ( ( ( ( A e. dom vol /\ B e. ( 0 [,] ( vol ` A ) ) ) /\ B < ( vol ` A ) ) /\ ( n e. NN /\ B < ( vol ` ( A i^i ( -u n [,] n ) ) ) ) ) /\ z e. ( -u n [,] n ) ) -> ( ( y e. RR |-> ( vol ` ( A i^i ( -u n [,] y ) ) ) ) ` z ) = ( vol ` ( A i^i ( -u n [,] z ) ) ) ) |
| 106 | 105 | eqeq1d | |- ( ( ( ( ( A e. dom vol /\ B e. ( 0 [,] ( vol ` A ) ) ) /\ B < ( vol ` A ) ) /\ ( n e. NN /\ B < ( vol ` ( A i^i ( -u n [,] n ) ) ) ) ) /\ z e. ( -u n [,] n ) ) -> ( ( ( y e. RR |-> ( vol ` ( A i^i ( -u n [,] y ) ) ) ) ` z ) = B <-> ( vol ` ( A i^i ( -u n [,] z ) ) ) = B ) ) |
| 107 | 46 | adantr | |- ( ( ( ( ( A e. dom vol /\ B e. ( 0 [,] ( vol ` A ) ) ) /\ B < ( vol ` A ) ) /\ ( n e. NN /\ B < ( vol ` ( A i^i ( -u n [,] n ) ) ) ) ) /\ ( z e. ( -u n [,] n ) /\ ( vol ` ( A i^i ( -u n [,] z ) ) ) = B ) ) -> A e. dom vol ) |
| 108 | 32 | adantr | |- ( ( ( ( ( A e. dom vol /\ B e. ( 0 [,] ( vol ` A ) ) ) /\ B < ( vol ` A ) ) /\ ( n e. NN /\ B < ( vol ` ( A i^i ( -u n [,] n ) ) ) ) ) /\ ( z e. ( -u n [,] n ) /\ ( vol ` ( A i^i ( -u n [,] z ) ) ) = B ) ) -> -u n e. RR ) |
| 109 | 99 | adantrr | |- ( ( ( ( ( A e. dom vol /\ B e. ( 0 [,] ( vol ` A ) ) ) /\ B < ( vol ` A ) ) /\ ( n e. NN /\ B < ( vol ` ( A i^i ( -u n [,] n ) ) ) ) ) /\ ( z e. ( -u n [,] n ) /\ ( vol ` ( A i^i ( -u n [,] z ) ) ) = B ) ) -> z e. RR ) |
| 110 | iccmbl | |- ( ( -u n e. RR /\ z e. RR ) -> ( -u n [,] z ) e. dom vol ) |
|
| 111 | 108 109 110 | syl2anc | |- ( ( ( ( ( A e. dom vol /\ B e. ( 0 [,] ( vol ` A ) ) ) /\ B < ( vol ` A ) ) /\ ( n e. NN /\ B < ( vol ` ( A i^i ( -u n [,] n ) ) ) ) ) /\ ( z e. ( -u n [,] n ) /\ ( vol ` ( A i^i ( -u n [,] z ) ) ) = B ) ) -> ( -u n [,] z ) e. dom vol ) |
| 112 | inmbl | |- ( ( A e. dom vol /\ ( -u n [,] z ) e. dom vol ) -> ( A i^i ( -u n [,] z ) ) e. dom vol ) |
|
| 113 | 107 111 112 | syl2anc | |- ( ( ( ( ( A e. dom vol /\ B e. ( 0 [,] ( vol ` A ) ) ) /\ B < ( vol ` A ) ) /\ ( n e. NN /\ B < ( vol ` ( A i^i ( -u n [,] n ) ) ) ) ) /\ ( z e. ( -u n [,] n ) /\ ( vol ` ( A i^i ( -u n [,] z ) ) ) = B ) ) -> ( A i^i ( -u n [,] z ) ) e. dom vol ) |
| 114 | inss1 | |- ( A i^i ( -u n [,] z ) ) C_ A |
|
| 115 | 114 | a1i | |- ( ( ( ( ( A e. dom vol /\ B e. ( 0 [,] ( vol ` A ) ) ) /\ B < ( vol ` A ) ) /\ ( n e. NN /\ B < ( vol ` ( A i^i ( -u n [,] n ) ) ) ) ) /\ ( z e. ( -u n [,] n ) /\ ( vol ` ( A i^i ( -u n [,] z ) ) ) = B ) ) -> ( A i^i ( -u n [,] z ) ) C_ A ) |
| 116 | simprr | |- ( ( ( ( ( A e. dom vol /\ B e. ( 0 [,] ( vol ` A ) ) ) /\ B < ( vol ` A ) ) /\ ( n e. NN /\ B < ( vol ` ( A i^i ( -u n [,] n ) ) ) ) ) /\ ( z e. ( -u n [,] n ) /\ ( vol ` ( A i^i ( -u n [,] z ) ) ) = B ) ) -> ( vol ` ( A i^i ( -u n [,] z ) ) ) = B ) |
|
| 117 | sseq1 | |- ( x = ( A i^i ( -u n [,] z ) ) -> ( x C_ A <-> ( A i^i ( -u n [,] z ) ) C_ A ) ) |
|
| 118 | fveqeq2 | |- ( x = ( A i^i ( -u n [,] z ) ) -> ( ( vol ` x ) = B <-> ( vol ` ( A i^i ( -u n [,] z ) ) ) = B ) ) |
|
| 119 | 117 118 | anbi12d | |- ( x = ( A i^i ( -u n [,] z ) ) -> ( ( x C_ A /\ ( vol ` x ) = B ) <-> ( ( A i^i ( -u n [,] z ) ) C_ A /\ ( vol ` ( A i^i ( -u n [,] z ) ) ) = B ) ) ) |
| 120 | 119 | rspcev | |- ( ( ( A i^i ( -u n [,] z ) ) e. dom vol /\ ( ( A i^i ( -u n [,] z ) ) C_ A /\ ( vol ` ( A i^i ( -u n [,] z ) ) ) = B ) ) -> E. x e. dom vol ( x C_ A /\ ( vol ` x ) = B ) ) |
| 121 | 113 115 116 120 | syl12anc | |- ( ( ( ( ( A e. dom vol /\ B e. ( 0 [,] ( vol ` A ) ) ) /\ B < ( vol ` A ) ) /\ ( n e. NN /\ B < ( vol ` ( A i^i ( -u n [,] n ) ) ) ) ) /\ ( z e. ( -u n [,] n ) /\ ( vol ` ( A i^i ( -u n [,] z ) ) ) = B ) ) -> E. x e. dom vol ( x C_ A /\ ( vol ` x ) = B ) ) |
| 122 | 121 | expr | |- ( ( ( ( ( A e. dom vol /\ B e. ( 0 [,] ( vol ` A ) ) ) /\ B < ( vol ` A ) ) /\ ( n e. NN /\ B < ( vol ` ( A i^i ( -u n [,] n ) ) ) ) ) /\ z e. ( -u n [,] n ) ) -> ( ( vol ` ( A i^i ( -u n [,] z ) ) ) = B -> E. x e. dom vol ( x C_ A /\ ( vol ` x ) = B ) ) ) |
| 123 | 106 122 | sylbid | |- ( ( ( ( ( A e. dom vol /\ B e. ( 0 [,] ( vol ` A ) ) ) /\ B < ( vol ` A ) ) /\ ( n e. NN /\ B < ( vol ` ( A i^i ( -u n [,] n ) ) ) ) ) /\ z e. ( -u n [,] n ) ) -> ( ( ( y e. RR |-> ( vol ` ( A i^i ( -u n [,] y ) ) ) ) ` z ) = B -> E. x e. dom vol ( x C_ A /\ ( vol ` x ) = B ) ) ) |
| 124 | 123 | rexlimdva | |- ( ( ( ( A e. dom vol /\ B e. ( 0 [,] ( vol ` A ) ) ) /\ B < ( vol ` A ) ) /\ ( n e. NN /\ B < ( vol ` ( A i^i ( -u n [,] n ) ) ) ) ) -> ( E. z e. ( -u n [,] n ) ( ( y e. RR |-> ( vol ` ( A i^i ( -u n [,] y ) ) ) ) ` z ) = B -> E. x e. dom vol ( x C_ A /\ ( vol ` x ) = B ) ) ) |
| 125 | 98 124 | mpd | |- ( ( ( ( A e. dom vol /\ B e. ( 0 [,] ( vol ` A ) ) ) /\ B < ( vol ` A ) ) /\ ( n e. NN /\ B < ( vol ` ( A i^i ( -u n [,] n ) ) ) ) ) -> E. x e. dom vol ( x C_ A /\ ( vol ` x ) = B ) ) |
| 126 | 29 125 | rexlimddv | |- ( ( ( A e. dom vol /\ B e. ( 0 [,] ( vol ` A ) ) ) /\ B < ( vol ` A ) ) -> E. x e. dom vol ( x C_ A /\ ( vol ` x ) = B ) ) |
| 127 | simpll | |- ( ( ( A e. dom vol /\ B e. ( 0 [,] ( vol ` A ) ) ) /\ B = ( vol ` A ) ) -> A e. dom vol ) |
|
| 128 | ssid | |- A C_ A |
|
| 129 | 128 | a1i | |- ( ( ( A e. dom vol /\ B e. ( 0 [,] ( vol ` A ) ) ) /\ B = ( vol ` A ) ) -> A C_ A ) |
| 130 | simpr | |- ( ( ( A e. dom vol /\ B e. ( 0 [,] ( vol ` A ) ) ) /\ B = ( vol ` A ) ) -> B = ( vol ` A ) ) |
|
| 131 | 130 | eqcomd | |- ( ( ( A e. dom vol /\ B e. ( 0 [,] ( vol ` A ) ) ) /\ B = ( vol ` A ) ) -> ( vol ` A ) = B ) |
| 132 | sseq1 | |- ( x = A -> ( x C_ A <-> A C_ A ) ) |
|
| 133 | fveqeq2 | |- ( x = A -> ( ( vol ` x ) = B <-> ( vol ` A ) = B ) ) |
|
| 134 | 132 133 | anbi12d | |- ( x = A -> ( ( x C_ A /\ ( vol ` x ) = B ) <-> ( A C_ A /\ ( vol ` A ) = B ) ) ) |
| 135 | 134 | rspcev | |- ( ( A e. dom vol /\ ( A C_ A /\ ( vol ` A ) = B ) ) -> E. x e. dom vol ( x C_ A /\ ( vol ` x ) = B ) ) |
| 136 | 127 129 131 135 | syl12anc | |- ( ( ( A e. dom vol /\ B e. ( 0 [,] ( vol ` A ) ) ) /\ B = ( vol ` A ) ) -> E. x e. dom vol ( x C_ A /\ ( vol ` x ) = B ) ) |
| 137 | 17 | simp3d | |- ( ( A e. dom vol /\ B e. ( 0 [,] ( vol ` A ) ) ) -> B <_ ( vol ` A ) ) |
| 138 | xrleloe | |- ( ( B e. RR* /\ ( vol ` A ) e. RR* ) -> ( B <_ ( vol ` A ) <-> ( B < ( vol ` A ) \/ B = ( vol ` A ) ) ) ) |
|
| 139 | 6 12 138 | syl2anc | |- ( ( A e. dom vol /\ B e. ( 0 [,] ( vol ` A ) ) ) -> ( B <_ ( vol ` A ) <-> ( B < ( vol ` A ) \/ B = ( vol ` A ) ) ) ) |
| 140 | 137 139 | mpbid | |- ( ( A e. dom vol /\ B e. ( 0 [,] ( vol ` A ) ) ) -> ( B < ( vol ` A ) \/ B = ( vol ` A ) ) ) |
| 141 | 126 136 140 | mpjaodan | |- ( ( A e. dom vol /\ B e. ( 0 [,] ( vol ` A ) ) ) -> E. x e. dom vol ( x C_ A /\ ( vol ` x ) = B ) ) |