This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The intermediate value theorem with weak inequality, increasing case. (Contributed by Mario Carneiro, 12-Aug-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ivth.1 | ⊢ ( 𝜑 → 𝐴 ∈ ℝ ) | |
| ivth.2 | ⊢ ( 𝜑 → 𝐵 ∈ ℝ ) | ||
| ivth.3 | ⊢ ( 𝜑 → 𝑈 ∈ ℝ ) | ||
| ivth.4 | ⊢ ( 𝜑 → 𝐴 < 𝐵 ) | ||
| ivth.5 | ⊢ ( 𝜑 → ( 𝐴 [,] 𝐵 ) ⊆ 𝐷 ) | ||
| ivth.7 | ⊢ ( 𝜑 → 𝐹 ∈ ( 𝐷 –cn→ ℂ ) ) | ||
| ivth.8 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) → ( 𝐹 ‘ 𝑥 ) ∈ ℝ ) | ||
| ivthle.9 | ⊢ ( 𝜑 → ( ( 𝐹 ‘ 𝐴 ) ≤ 𝑈 ∧ 𝑈 ≤ ( 𝐹 ‘ 𝐵 ) ) ) | ||
| Assertion | ivthle | ⊢ ( 𝜑 → ∃ 𝑐 ∈ ( 𝐴 [,] 𝐵 ) ( 𝐹 ‘ 𝑐 ) = 𝑈 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ivth.1 | ⊢ ( 𝜑 → 𝐴 ∈ ℝ ) | |
| 2 | ivth.2 | ⊢ ( 𝜑 → 𝐵 ∈ ℝ ) | |
| 3 | ivth.3 | ⊢ ( 𝜑 → 𝑈 ∈ ℝ ) | |
| 4 | ivth.4 | ⊢ ( 𝜑 → 𝐴 < 𝐵 ) | |
| 5 | ivth.5 | ⊢ ( 𝜑 → ( 𝐴 [,] 𝐵 ) ⊆ 𝐷 ) | |
| 6 | ivth.7 | ⊢ ( 𝜑 → 𝐹 ∈ ( 𝐷 –cn→ ℂ ) ) | |
| 7 | ivth.8 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) → ( 𝐹 ‘ 𝑥 ) ∈ ℝ ) | |
| 8 | ivthle.9 | ⊢ ( 𝜑 → ( ( 𝐹 ‘ 𝐴 ) ≤ 𝑈 ∧ 𝑈 ≤ ( 𝐹 ‘ 𝐵 ) ) ) | |
| 9 | ioossicc | ⊢ ( 𝐴 (,) 𝐵 ) ⊆ ( 𝐴 [,] 𝐵 ) | |
| 10 | 1 | adantr | ⊢ ( ( 𝜑 ∧ ( ( 𝐹 ‘ 𝐴 ) < 𝑈 ∧ 𝑈 < ( 𝐹 ‘ 𝐵 ) ) ) → 𝐴 ∈ ℝ ) |
| 11 | 2 | adantr | ⊢ ( ( 𝜑 ∧ ( ( 𝐹 ‘ 𝐴 ) < 𝑈 ∧ 𝑈 < ( 𝐹 ‘ 𝐵 ) ) ) → 𝐵 ∈ ℝ ) |
| 12 | 3 | adantr | ⊢ ( ( 𝜑 ∧ ( ( 𝐹 ‘ 𝐴 ) < 𝑈 ∧ 𝑈 < ( 𝐹 ‘ 𝐵 ) ) ) → 𝑈 ∈ ℝ ) |
| 13 | 4 | adantr | ⊢ ( ( 𝜑 ∧ ( ( 𝐹 ‘ 𝐴 ) < 𝑈 ∧ 𝑈 < ( 𝐹 ‘ 𝐵 ) ) ) → 𝐴 < 𝐵 ) |
| 14 | 5 | adantr | ⊢ ( ( 𝜑 ∧ ( ( 𝐹 ‘ 𝐴 ) < 𝑈 ∧ 𝑈 < ( 𝐹 ‘ 𝐵 ) ) ) → ( 𝐴 [,] 𝐵 ) ⊆ 𝐷 ) |
| 15 | 6 | adantr | ⊢ ( ( 𝜑 ∧ ( ( 𝐹 ‘ 𝐴 ) < 𝑈 ∧ 𝑈 < ( 𝐹 ‘ 𝐵 ) ) ) → 𝐹 ∈ ( 𝐷 –cn→ ℂ ) ) |
| 16 | 7 | adantlr | ⊢ ( ( ( 𝜑 ∧ ( ( 𝐹 ‘ 𝐴 ) < 𝑈 ∧ 𝑈 < ( 𝐹 ‘ 𝐵 ) ) ) ∧ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) → ( 𝐹 ‘ 𝑥 ) ∈ ℝ ) |
| 17 | simpr | ⊢ ( ( 𝜑 ∧ ( ( 𝐹 ‘ 𝐴 ) < 𝑈 ∧ 𝑈 < ( 𝐹 ‘ 𝐵 ) ) ) → ( ( 𝐹 ‘ 𝐴 ) < 𝑈 ∧ 𝑈 < ( 𝐹 ‘ 𝐵 ) ) ) | |
| 18 | 10 11 12 13 14 15 16 17 | ivth | ⊢ ( ( 𝜑 ∧ ( ( 𝐹 ‘ 𝐴 ) < 𝑈 ∧ 𝑈 < ( 𝐹 ‘ 𝐵 ) ) ) → ∃ 𝑐 ∈ ( 𝐴 (,) 𝐵 ) ( 𝐹 ‘ 𝑐 ) = 𝑈 ) |
| 19 | ssrexv | ⊢ ( ( 𝐴 (,) 𝐵 ) ⊆ ( 𝐴 [,] 𝐵 ) → ( ∃ 𝑐 ∈ ( 𝐴 (,) 𝐵 ) ( 𝐹 ‘ 𝑐 ) = 𝑈 → ∃ 𝑐 ∈ ( 𝐴 [,] 𝐵 ) ( 𝐹 ‘ 𝑐 ) = 𝑈 ) ) | |
| 20 | 9 18 19 | mpsyl | ⊢ ( ( 𝜑 ∧ ( ( 𝐹 ‘ 𝐴 ) < 𝑈 ∧ 𝑈 < ( 𝐹 ‘ 𝐵 ) ) ) → ∃ 𝑐 ∈ ( 𝐴 [,] 𝐵 ) ( 𝐹 ‘ 𝑐 ) = 𝑈 ) |
| 21 | 20 | anassrs | ⊢ ( ( ( 𝜑 ∧ ( 𝐹 ‘ 𝐴 ) < 𝑈 ) ∧ 𝑈 < ( 𝐹 ‘ 𝐵 ) ) → ∃ 𝑐 ∈ ( 𝐴 [,] 𝐵 ) ( 𝐹 ‘ 𝑐 ) = 𝑈 ) |
| 22 | 1 | rexrd | ⊢ ( 𝜑 → 𝐴 ∈ ℝ* ) |
| 23 | 2 | rexrd | ⊢ ( 𝜑 → 𝐵 ∈ ℝ* ) |
| 24 | 1 2 4 | ltled | ⊢ ( 𝜑 → 𝐴 ≤ 𝐵 ) |
| 25 | ubicc2 | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 ≤ 𝐵 ) → 𝐵 ∈ ( 𝐴 [,] 𝐵 ) ) | |
| 26 | 22 23 24 25 | syl3anc | ⊢ ( 𝜑 → 𝐵 ∈ ( 𝐴 [,] 𝐵 ) ) |
| 27 | eqcom | ⊢ ( ( 𝐹 ‘ 𝑐 ) = 𝑈 ↔ 𝑈 = ( 𝐹 ‘ 𝑐 ) ) | |
| 28 | fveq2 | ⊢ ( 𝑐 = 𝐵 → ( 𝐹 ‘ 𝑐 ) = ( 𝐹 ‘ 𝐵 ) ) | |
| 29 | 28 | eqeq2d | ⊢ ( 𝑐 = 𝐵 → ( 𝑈 = ( 𝐹 ‘ 𝑐 ) ↔ 𝑈 = ( 𝐹 ‘ 𝐵 ) ) ) |
| 30 | 27 29 | bitrid | ⊢ ( 𝑐 = 𝐵 → ( ( 𝐹 ‘ 𝑐 ) = 𝑈 ↔ 𝑈 = ( 𝐹 ‘ 𝐵 ) ) ) |
| 31 | 30 | rspcev | ⊢ ( ( 𝐵 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑈 = ( 𝐹 ‘ 𝐵 ) ) → ∃ 𝑐 ∈ ( 𝐴 [,] 𝐵 ) ( 𝐹 ‘ 𝑐 ) = 𝑈 ) |
| 32 | 26 31 | sylan | ⊢ ( ( 𝜑 ∧ 𝑈 = ( 𝐹 ‘ 𝐵 ) ) → ∃ 𝑐 ∈ ( 𝐴 [,] 𝐵 ) ( 𝐹 ‘ 𝑐 ) = 𝑈 ) |
| 33 | 32 | adantlr | ⊢ ( ( ( 𝜑 ∧ ( 𝐹 ‘ 𝐴 ) < 𝑈 ) ∧ 𝑈 = ( 𝐹 ‘ 𝐵 ) ) → ∃ 𝑐 ∈ ( 𝐴 [,] 𝐵 ) ( 𝐹 ‘ 𝑐 ) = 𝑈 ) |
| 34 | 8 | simprd | ⊢ ( 𝜑 → 𝑈 ≤ ( 𝐹 ‘ 𝐵 ) ) |
| 35 | fveq2 | ⊢ ( 𝑥 = 𝐵 → ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝐵 ) ) | |
| 36 | 35 | eleq1d | ⊢ ( 𝑥 = 𝐵 → ( ( 𝐹 ‘ 𝑥 ) ∈ ℝ ↔ ( 𝐹 ‘ 𝐵 ) ∈ ℝ ) ) |
| 37 | 7 | ralrimiva | ⊢ ( 𝜑 → ∀ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ( 𝐹 ‘ 𝑥 ) ∈ ℝ ) |
| 38 | 36 37 26 | rspcdva | ⊢ ( 𝜑 → ( 𝐹 ‘ 𝐵 ) ∈ ℝ ) |
| 39 | 3 38 | leloed | ⊢ ( 𝜑 → ( 𝑈 ≤ ( 𝐹 ‘ 𝐵 ) ↔ ( 𝑈 < ( 𝐹 ‘ 𝐵 ) ∨ 𝑈 = ( 𝐹 ‘ 𝐵 ) ) ) ) |
| 40 | 34 39 | mpbid | ⊢ ( 𝜑 → ( 𝑈 < ( 𝐹 ‘ 𝐵 ) ∨ 𝑈 = ( 𝐹 ‘ 𝐵 ) ) ) |
| 41 | 40 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝐹 ‘ 𝐴 ) < 𝑈 ) → ( 𝑈 < ( 𝐹 ‘ 𝐵 ) ∨ 𝑈 = ( 𝐹 ‘ 𝐵 ) ) ) |
| 42 | 21 33 41 | mpjaodan | ⊢ ( ( 𝜑 ∧ ( 𝐹 ‘ 𝐴 ) < 𝑈 ) → ∃ 𝑐 ∈ ( 𝐴 [,] 𝐵 ) ( 𝐹 ‘ 𝑐 ) = 𝑈 ) |
| 43 | lbicc2 | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 ≤ 𝐵 ) → 𝐴 ∈ ( 𝐴 [,] 𝐵 ) ) | |
| 44 | 22 23 24 43 | syl3anc | ⊢ ( 𝜑 → 𝐴 ∈ ( 𝐴 [,] 𝐵 ) ) |
| 45 | fveqeq2 | ⊢ ( 𝑐 = 𝐴 → ( ( 𝐹 ‘ 𝑐 ) = 𝑈 ↔ ( 𝐹 ‘ 𝐴 ) = 𝑈 ) ) | |
| 46 | 45 | rspcev | ⊢ ( ( 𝐴 ∈ ( 𝐴 [,] 𝐵 ) ∧ ( 𝐹 ‘ 𝐴 ) = 𝑈 ) → ∃ 𝑐 ∈ ( 𝐴 [,] 𝐵 ) ( 𝐹 ‘ 𝑐 ) = 𝑈 ) |
| 47 | 44 46 | sylan | ⊢ ( ( 𝜑 ∧ ( 𝐹 ‘ 𝐴 ) = 𝑈 ) → ∃ 𝑐 ∈ ( 𝐴 [,] 𝐵 ) ( 𝐹 ‘ 𝑐 ) = 𝑈 ) |
| 48 | 8 | simpld | ⊢ ( 𝜑 → ( 𝐹 ‘ 𝐴 ) ≤ 𝑈 ) |
| 49 | fveq2 | ⊢ ( 𝑥 = 𝐴 → ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝐴 ) ) | |
| 50 | 49 | eleq1d | ⊢ ( 𝑥 = 𝐴 → ( ( 𝐹 ‘ 𝑥 ) ∈ ℝ ↔ ( 𝐹 ‘ 𝐴 ) ∈ ℝ ) ) |
| 51 | 50 37 44 | rspcdva | ⊢ ( 𝜑 → ( 𝐹 ‘ 𝐴 ) ∈ ℝ ) |
| 52 | 51 3 | leloed | ⊢ ( 𝜑 → ( ( 𝐹 ‘ 𝐴 ) ≤ 𝑈 ↔ ( ( 𝐹 ‘ 𝐴 ) < 𝑈 ∨ ( 𝐹 ‘ 𝐴 ) = 𝑈 ) ) ) |
| 53 | 48 52 | mpbid | ⊢ ( 𝜑 → ( ( 𝐹 ‘ 𝐴 ) < 𝑈 ∨ ( 𝐹 ‘ 𝐴 ) = 𝑈 ) ) |
| 54 | 42 47 53 | mpjaodan | ⊢ ( 𝜑 → ∃ 𝑐 ∈ ( 𝐴 [,] 𝐵 ) ( 𝐹 ‘ 𝑐 ) = 𝑈 ) |