This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A closed interval with identical lower and upper bounds is a singleton. (Contributed by Jeff Hankins, 13-Jul-2009)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | iccid | ⊢ ( 𝐴 ∈ ℝ* → ( 𝐴 [,] 𝐴 ) = { 𝐴 } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elicc1 | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐴 ∈ ℝ* ) → ( 𝑥 ∈ ( 𝐴 [,] 𝐴 ) ↔ ( 𝑥 ∈ ℝ* ∧ 𝐴 ≤ 𝑥 ∧ 𝑥 ≤ 𝐴 ) ) ) | |
| 2 | 1 | anidms | ⊢ ( 𝐴 ∈ ℝ* → ( 𝑥 ∈ ( 𝐴 [,] 𝐴 ) ↔ ( 𝑥 ∈ ℝ* ∧ 𝐴 ≤ 𝑥 ∧ 𝑥 ≤ 𝐴 ) ) ) |
| 3 | xrlenlt | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝑥 ∈ ℝ* ) → ( 𝐴 ≤ 𝑥 ↔ ¬ 𝑥 < 𝐴 ) ) | |
| 4 | xrlenlt | ⊢ ( ( 𝑥 ∈ ℝ* ∧ 𝐴 ∈ ℝ* ) → ( 𝑥 ≤ 𝐴 ↔ ¬ 𝐴 < 𝑥 ) ) | |
| 5 | 4 | ancoms | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝑥 ∈ ℝ* ) → ( 𝑥 ≤ 𝐴 ↔ ¬ 𝐴 < 𝑥 ) ) |
| 6 | xrlttri3 | ⊢ ( ( 𝑥 ∈ ℝ* ∧ 𝐴 ∈ ℝ* ) → ( 𝑥 = 𝐴 ↔ ( ¬ 𝑥 < 𝐴 ∧ ¬ 𝐴 < 𝑥 ) ) ) | |
| 7 | 6 | biimprd | ⊢ ( ( 𝑥 ∈ ℝ* ∧ 𝐴 ∈ ℝ* ) → ( ( ¬ 𝑥 < 𝐴 ∧ ¬ 𝐴 < 𝑥 ) → 𝑥 = 𝐴 ) ) |
| 8 | 7 | ancoms | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝑥 ∈ ℝ* ) → ( ( ¬ 𝑥 < 𝐴 ∧ ¬ 𝐴 < 𝑥 ) → 𝑥 = 𝐴 ) ) |
| 9 | 8 | expcomd | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝑥 ∈ ℝ* ) → ( ¬ 𝐴 < 𝑥 → ( ¬ 𝑥 < 𝐴 → 𝑥 = 𝐴 ) ) ) |
| 10 | 5 9 | sylbid | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝑥 ∈ ℝ* ) → ( 𝑥 ≤ 𝐴 → ( ¬ 𝑥 < 𝐴 → 𝑥 = 𝐴 ) ) ) |
| 11 | 10 | com23 | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝑥 ∈ ℝ* ) → ( ¬ 𝑥 < 𝐴 → ( 𝑥 ≤ 𝐴 → 𝑥 = 𝐴 ) ) ) |
| 12 | 3 11 | sylbid | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝑥 ∈ ℝ* ) → ( 𝐴 ≤ 𝑥 → ( 𝑥 ≤ 𝐴 → 𝑥 = 𝐴 ) ) ) |
| 13 | 12 | ex | ⊢ ( 𝐴 ∈ ℝ* → ( 𝑥 ∈ ℝ* → ( 𝐴 ≤ 𝑥 → ( 𝑥 ≤ 𝐴 → 𝑥 = 𝐴 ) ) ) ) |
| 14 | 13 | 3impd | ⊢ ( 𝐴 ∈ ℝ* → ( ( 𝑥 ∈ ℝ* ∧ 𝐴 ≤ 𝑥 ∧ 𝑥 ≤ 𝐴 ) → 𝑥 = 𝐴 ) ) |
| 15 | eleq1a | ⊢ ( 𝐴 ∈ ℝ* → ( 𝑥 = 𝐴 → 𝑥 ∈ ℝ* ) ) | |
| 16 | xrleid | ⊢ ( 𝐴 ∈ ℝ* → 𝐴 ≤ 𝐴 ) | |
| 17 | breq2 | ⊢ ( 𝑥 = 𝐴 → ( 𝐴 ≤ 𝑥 ↔ 𝐴 ≤ 𝐴 ) ) | |
| 18 | 16 17 | syl5ibrcom | ⊢ ( 𝐴 ∈ ℝ* → ( 𝑥 = 𝐴 → 𝐴 ≤ 𝑥 ) ) |
| 19 | breq1 | ⊢ ( 𝑥 = 𝐴 → ( 𝑥 ≤ 𝐴 ↔ 𝐴 ≤ 𝐴 ) ) | |
| 20 | 16 19 | syl5ibrcom | ⊢ ( 𝐴 ∈ ℝ* → ( 𝑥 = 𝐴 → 𝑥 ≤ 𝐴 ) ) |
| 21 | 15 18 20 | 3jcad | ⊢ ( 𝐴 ∈ ℝ* → ( 𝑥 = 𝐴 → ( 𝑥 ∈ ℝ* ∧ 𝐴 ≤ 𝑥 ∧ 𝑥 ≤ 𝐴 ) ) ) |
| 22 | 14 21 | impbid | ⊢ ( 𝐴 ∈ ℝ* → ( ( 𝑥 ∈ ℝ* ∧ 𝐴 ≤ 𝑥 ∧ 𝑥 ≤ 𝐴 ) ↔ 𝑥 = 𝐴 ) ) |
| 23 | velsn | ⊢ ( 𝑥 ∈ { 𝐴 } ↔ 𝑥 = 𝐴 ) | |
| 24 | 22 23 | bitr4di | ⊢ ( 𝐴 ∈ ℝ* → ( ( 𝑥 ∈ ℝ* ∧ 𝐴 ≤ 𝑥 ∧ 𝑥 ≤ 𝐴 ) ↔ 𝑥 ∈ { 𝐴 } ) ) |
| 25 | 2 24 | bitrd | ⊢ ( 𝐴 ∈ ℝ* → ( 𝑥 ∈ ( 𝐴 [,] 𝐴 ) ↔ 𝑥 ∈ { 𝐴 } ) ) |
| 26 | 25 | eqrdv | ⊢ ( 𝐴 ∈ ℝ* → ( 𝐴 [,] 𝐴 ) = { 𝐴 } ) |