This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A nullset is measurable. (Contributed by Mario Carneiro, 18-Mar-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | nulmbl | ⊢ ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) = 0 ) → 𝐴 ∈ dom vol ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl | ⊢ ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) = 0 ) → 𝐴 ⊆ ℝ ) | |
| 2 | elpwi | ⊢ ( 𝑥 ∈ 𝒫 ℝ → 𝑥 ⊆ ℝ ) | |
| 3 | inss2 | ⊢ ( 𝑥 ∩ 𝐴 ) ⊆ 𝐴 | |
| 4 | ovolssnul | ⊢ ( ( ( 𝑥 ∩ 𝐴 ) ⊆ 𝐴 ∧ 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) = 0 ) → ( vol* ‘ ( 𝑥 ∩ 𝐴 ) ) = 0 ) | |
| 5 | 3 4 | mp3an1 | ⊢ ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) = 0 ) → ( vol* ‘ ( 𝑥 ∩ 𝐴 ) ) = 0 ) |
| 6 | 5 | adantr | ⊢ ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) = 0 ) ∧ ( 𝑥 ⊆ ℝ ∧ ( vol* ‘ 𝑥 ) ∈ ℝ ) ) → ( vol* ‘ ( 𝑥 ∩ 𝐴 ) ) = 0 ) |
| 7 | 6 | oveq1d | ⊢ ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) = 0 ) ∧ ( 𝑥 ⊆ ℝ ∧ ( vol* ‘ 𝑥 ) ∈ ℝ ) ) → ( ( vol* ‘ ( 𝑥 ∩ 𝐴 ) ) + ( vol* ‘ ( 𝑥 ∖ 𝐴 ) ) ) = ( 0 + ( vol* ‘ ( 𝑥 ∖ 𝐴 ) ) ) ) |
| 8 | difss | ⊢ ( 𝑥 ∖ 𝐴 ) ⊆ 𝑥 | |
| 9 | ovolsscl | ⊢ ( ( ( 𝑥 ∖ 𝐴 ) ⊆ 𝑥 ∧ 𝑥 ⊆ ℝ ∧ ( vol* ‘ 𝑥 ) ∈ ℝ ) → ( vol* ‘ ( 𝑥 ∖ 𝐴 ) ) ∈ ℝ ) | |
| 10 | 8 9 | mp3an1 | ⊢ ( ( 𝑥 ⊆ ℝ ∧ ( vol* ‘ 𝑥 ) ∈ ℝ ) → ( vol* ‘ ( 𝑥 ∖ 𝐴 ) ) ∈ ℝ ) |
| 11 | 10 | adantl | ⊢ ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) = 0 ) ∧ ( 𝑥 ⊆ ℝ ∧ ( vol* ‘ 𝑥 ) ∈ ℝ ) ) → ( vol* ‘ ( 𝑥 ∖ 𝐴 ) ) ∈ ℝ ) |
| 12 | 11 | recnd | ⊢ ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) = 0 ) ∧ ( 𝑥 ⊆ ℝ ∧ ( vol* ‘ 𝑥 ) ∈ ℝ ) ) → ( vol* ‘ ( 𝑥 ∖ 𝐴 ) ) ∈ ℂ ) |
| 13 | 12 | addlidd | ⊢ ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) = 0 ) ∧ ( 𝑥 ⊆ ℝ ∧ ( vol* ‘ 𝑥 ) ∈ ℝ ) ) → ( 0 + ( vol* ‘ ( 𝑥 ∖ 𝐴 ) ) ) = ( vol* ‘ ( 𝑥 ∖ 𝐴 ) ) ) |
| 14 | 7 13 | eqtrd | ⊢ ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) = 0 ) ∧ ( 𝑥 ⊆ ℝ ∧ ( vol* ‘ 𝑥 ) ∈ ℝ ) ) → ( ( vol* ‘ ( 𝑥 ∩ 𝐴 ) ) + ( vol* ‘ ( 𝑥 ∖ 𝐴 ) ) ) = ( vol* ‘ ( 𝑥 ∖ 𝐴 ) ) ) |
| 15 | simprl | ⊢ ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) = 0 ) ∧ ( 𝑥 ⊆ ℝ ∧ ( vol* ‘ 𝑥 ) ∈ ℝ ) ) → 𝑥 ⊆ ℝ ) | |
| 16 | ovolss | ⊢ ( ( ( 𝑥 ∖ 𝐴 ) ⊆ 𝑥 ∧ 𝑥 ⊆ ℝ ) → ( vol* ‘ ( 𝑥 ∖ 𝐴 ) ) ≤ ( vol* ‘ 𝑥 ) ) | |
| 17 | 8 15 16 | sylancr | ⊢ ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) = 0 ) ∧ ( 𝑥 ⊆ ℝ ∧ ( vol* ‘ 𝑥 ) ∈ ℝ ) ) → ( vol* ‘ ( 𝑥 ∖ 𝐴 ) ) ≤ ( vol* ‘ 𝑥 ) ) |
| 18 | 14 17 | eqbrtrd | ⊢ ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) = 0 ) ∧ ( 𝑥 ⊆ ℝ ∧ ( vol* ‘ 𝑥 ) ∈ ℝ ) ) → ( ( vol* ‘ ( 𝑥 ∩ 𝐴 ) ) + ( vol* ‘ ( 𝑥 ∖ 𝐴 ) ) ) ≤ ( vol* ‘ 𝑥 ) ) |
| 19 | 18 | expr | ⊢ ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) = 0 ) ∧ 𝑥 ⊆ ℝ ) → ( ( vol* ‘ 𝑥 ) ∈ ℝ → ( ( vol* ‘ ( 𝑥 ∩ 𝐴 ) ) + ( vol* ‘ ( 𝑥 ∖ 𝐴 ) ) ) ≤ ( vol* ‘ 𝑥 ) ) ) |
| 20 | 2 19 | sylan2 | ⊢ ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) = 0 ) ∧ 𝑥 ∈ 𝒫 ℝ ) → ( ( vol* ‘ 𝑥 ) ∈ ℝ → ( ( vol* ‘ ( 𝑥 ∩ 𝐴 ) ) + ( vol* ‘ ( 𝑥 ∖ 𝐴 ) ) ) ≤ ( vol* ‘ 𝑥 ) ) ) |
| 21 | 20 | ralrimiva | ⊢ ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) = 0 ) → ∀ 𝑥 ∈ 𝒫 ℝ ( ( vol* ‘ 𝑥 ) ∈ ℝ → ( ( vol* ‘ ( 𝑥 ∩ 𝐴 ) ) + ( vol* ‘ ( 𝑥 ∖ 𝐴 ) ) ) ≤ ( vol* ‘ 𝑥 ) ) ) |
| 22 | ismbl2 | ⊢ ( 𝐴 ∈ dom vol ↔ ( 𝐴 ⊆ ℝ ∧ ∀ 𝑥 ∈ 𝒫 ℝ ( ( vol* ‘ 𝑥 ) ∈ ℝ → ( ( vol* ‘ ( 𝑥 ∩ 𝐴 ) ) + ( vol* ‘ ( 𝑥 ∖ 𝐴 ) ) ) ≤ ( vol* ‘ 𝑥 ) ) ) ) | |
| 23 | 1 21 22 | sylanbrc | ⊢ ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) = 0 ) → 𝐴 ∈ dom vol ) |