This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An extended real between two others is real. (Contributed by NM, 6-Feb-2007)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | xrre2 | ⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ) ∧ ( 𝐴 < 𝐵 ∧ 𝐵 < 𝐶 ) ) → 𝐵 ∈ ℝ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mnfle | ⊢ ( 𝐴 ∈ ℝ* → -∞ ≤ 𝐴 ) | |
| 2 | 1 | adantr | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) → -∞ ≤ 𝐴 ) |
| 3 | mnfxr | ⊢ -∞ ∈ ℝ* | |
| 4 | xrlelttr | ⊢ ( ( -∞ ∈ ℝ* ∧ 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) → ( ( -∞ ≤ 𝐴 ∧ 𝐴 < 𝐵 ) → -∞ < 𝐵 ) ) | |
| 5 | 3 4 | mp3an1 | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) → ( ( -∞ ≤ 𝐴 ∧ 𝐴 < 𝐵 ) → -∞ < 𝐵 ) ) |
| 6 | 2 5 | mpand | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) → ( 𝐴 < 𝐵 → -∞ < 𝐵 ) ) |
| 7 | 6 | 3adant3 | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ) → ( 𝐴 < 𝐵 → -∞ < 𝐵 ) ) |
| 8 | pnfge | ⊢ ( 𝐶 ∈ ℝ* → 𝐶 ≤ +∞ ) | |
| 9 | 8 | adantl | ⊢ ( ( 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ) → 𝐶 ≤ +∞ ) |
| 10 | pnfxr | ⊢ +∞ ∈ ℝ* | |
| 11 | xrltletr | ⊢ ( ( 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ∧ +∞ ∈ ℝ* ) → ( ( 𝐵 < 𝐶 ∧ 𝐶 ≤ +∞ ) → 𝐵 < +∞ ) ) | |
| 12 | 10 11 | mp3an3 | ⊢ ( ( 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ) → ( ( 𝐵 < 𝐶 ∧ 𝐶 ≤ +∞ ) → 𝐵 < +∞ ) ) |
| 13 | 9 12 | mpan2d | ⊢ ( ( 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ) → ( 𝐵 < 𝐶 → 𝐵 < +∞ ) ) |
| 14 | 13 | 3adant1 | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ) → ( 𝐵 < 𝐶 → 𝐵 < +∞ ) ) |
| 15 | 7 14 | anim12d | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ) → ( ( 𝐴 < 𝐵 ∧ 𝐵 < 𝐶 ) → ( -∞ < 𝐵 ∧ 𝐵 < +∞ ) ) ) |
| 16 | xrrebnd | ⊢ ( 𝐵 ∈ ℝ* → ( 𝐵 ∈ ℝ ↔ ( -∞ < 𝐵 ∧ 𝐵 < +∞ ) ) ) | |
| 17 | 16 | 3ad2ant2 | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ) → ( 𝐵 ∈ ℝ ↔ ( -∞ < 𝐵 ∧ 𝐵 < +∞ ) ) ) |
| 18 | 15 17 | sylibrd | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ) → ( ( 𝐴 < 𝐵 ∧ 𝐵 < 𝐶 ) → 𝐵 ∈ ℝ ) ) |
| 19 | 18 | imp | ⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ) ∧ ( 𝐴 < 𝐵 ∧ 𝐵 < 𝐶 ) ) → 𝐵 ∈ ℝ ) |