This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for voliun . (Contributed by Mario Carneiro, 20-Mar-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | voliunlem.3 | ⊢ ( 𝜑 → 𝐹 : ℕ ⟶ dom vol ) | |
| voliunlem.5 | ⊢ ( 𝜑 → Disj 𝑖 ∈ ℕ ( 𝐹 ‘ 𝑖 ) ) | ||
| voliunlem1.6 | ⊢ 𝐻 = ( 𝑛 ∈ ℕ ↦ ( vol* ‘ ( 𝐸 ∩ ( 𝐹 ‘ 𝑛 ) ) ) ) | ||
| voliunlem1.7 | ⊢ ( 𝜑 → 𝐸 ⊆ ℝ ) | ||
| voliunlem1.8 | ⊢ ( 𝜑 → ( vol* ‘ 𝐸 ) ∈ ℝ ) | ||
| Assertion | voliunlem1 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( ( seq 1 ( + , 𝐻 ) ‘ 𝑘 ) + ( vol* ‘ ( 𝐸 ∖ ∪ ran 𝐹 ) ) ) ≤ ( vol* ‘ 𝐸 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | voliunlem.3 | ⊢ ( 𝜑 → 𝐹 : ℕ ⟶ dom vol ) | |
| 2 | voliunlem.5 | ⊢ ( 𝜑 → Disj 𝑖 ∈ ℕ ( 𝐹 ‘ 𝑖 ) ) | |
| 3 | voliunlem1.6 | ⊢ 𝐻 = ( 𝑛 ∈ ℕ ↦ ( vol* ‘ ( 𝐸 ∩ ( 𝐹 ‘ 𝑛 ) ) ) ) | |
| 4 | voliunlem1.7 | ⊢ ( 𝜑 → 𝐸 ⊆ ℝ ) | |
| 5 | voliunlem1.8 | ⊢ ( 𝜑 → ( vol* ‘ 𝐸 ) ∈ ℝ ) | |
| 6 | difss | ⊢ ( 𝐸 ∖ ∪ ran 𝐹 ) ⊆ 𝐸 | |
| 7 | 5 | adantr | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( vol* ‘ 𝐸 ) ∈ ℝ ) |
| 8 | ovolsscl | ⊢ ( ( ( 𝐸 ∖ ∪ ran 𝐹 ) ⊆ 𝐸 ∧ 𝐸 ⊆ ℝ ∧ ( vol* ‘ 𝐸 ) ∈ ℝ ) → ( vol* ‘ ( 𝐸 ∖ ∪ ran 𝐹 ) ) ∈ ℝ ) | |
| 9 | 6 4 7 8 | mp3an2ani | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( vol* ‘ ( 𝐸 ∖ ∪ ran 𝐹 ) ) ∈ ℝ ) |
| 10 | difss | ⊢ ( 𝐸 ∖ ∪ 𝑛 ∈ ( 1 ... 𝑘 ) ( 𝐹 ‘ 𝑛 ) ) ⊆ 𝐸 | |
| 11 | ovolsscl | ⊢ ( ( ( 𝐸 ∖ ∪ 𝑛 ∈ ( 1 ... 𝑘 ) ( 𝐹 ‘ 𝑛 ) ) ⊆ 𝐸 ∧ 𝐸 ⊆ ℝ ∧ ( vol* ‘ 𝐸 ) ∈ ℝ ) → ( vol* ‘ ( 𝐸 ∖ ∪ 𝑛 ∈ ( 1 ... 𝑘 ) ( 𝐹 ‘ 𝑛 ) ) ) ∈ ℝ ) | |
| 12 | 10 4 7 11 | mp3an2ani | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( vol* ‘ ( 𝐸 ∖ ∪ 𝑛 ∈ ( 1 ... 𝑘 ) ( 𝐹 ‘ 𝑛 ) ) ) ∈ ℝ ) |
| 13 | inss1 | ⊢ ( 𝐸 ∩ ∪ 𝑛 ∈ ( 1 ... 𝑘 ) ( 𝐹 ‘ 𝑛 ) ) ⊆ 𝐸 | |
| 14 | ovolsscl | ⊢ ( ( ( 𝐸 ∩ ∪ 𝑛 ∈ ( 1 ... 𝑘 ) ( 𝐹 ‘ 𝑛 ) ) ⊆ 𝐸 ∧ 𝐸 ⊆ ℝ ∧ ( vol* ‘ 𝐸 ) ∈ ℝ ) → ( vol* ‘ ( 𝐸 ∩ ∪ 𝑛 ∈ ( 1 ... 𝑘 ) ( 𝐹 ‘ 𝑛 ) ) ) ∈ ℝ ) | |
| 15 | 13 4 7 14 | mp3an2ani | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( vol* ‘ ( 𝐸 ∩ ∪ 𝑛 ∈ ( 1 ... 𝑘 ) ( 𝐹 ‘ 𝑛 ) ) ) ∈ ℝ ) |
| 16 | elfznn | ⊢ ( 𝑛 ∈ ( 1 ... 𝑘 ) → 𝑛 ∈ ℕ ) | |
| 17 | 1 | ffnd | ⊢ ( 𝜑 → 𝐹 Fn ℕ ) |
| 18 | fnfvelrn | ⊢ ( ( 𝐹 Fn ℕ ∧ 𝑛 ∈ ℕ ) → ( 𝐹 ‘ 𝑛 ) ∈ ran 𝐹 ) | |
| 19 | 17 18 | sylan | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝐹 ‘ 𝑛 ) ∈ ran 𝐹 ) |
| 20 | elssuni | ⊢ ( ( 𝐹 ‘ 𝑛 ) ∈ ran 𝐹 → ( 𝐹 ‘ 𝑛 ) ⊆ ∪ ran 𝐹 ) | |
| 21 | 19 20 | syl | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝐹 ‘ 𝑛 ) ⊆ ∪ ran 𝐹 ) |
| 22 | 16 21 | sylan2 | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... 𝑘 ) ) → ( 𝐹 ‘ 𝑛 ) ⊆ ∪ ran 𝐹 ) |
| 23 | 22 | ralrimiva | ⊢ ( 𝜑 → ∀ 𝑛 ∈ ( 1 ... 𝑘 ) ( 𝐹 ‘ 𝑛 ) ⊆ ∪ ran 𝐹 ) |
| 24 | 23 | adantr | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ∀ 𝑛 ∈ ( 1 ... 𝑘 ) ( 𝐹 ‘ 𝑛 ) ⊆ ∪ ran 𝐹 ) |
| 25 | iunss | ⊢ ( ∪ 𝑛 ∈ ( 1 ... 𝑘 ) ( 𝐹 ‘ 𝑛 ) ⊆ ∪ ran 𝐹 ↔ ∀ 𝑛 ∈ ( 1 ... 𝑘 ) ( 𝐹 ‘ 𝑛 ) ⊆ ∪ ran 𝐹 ) | |
| 26 | 24 25 | sylibr | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ∪ 𝑛 ∈ ( 1 ... 𝑘 ) ( 𝐹 ‘ 𝑛 ) ⊆ ∪ ran 𝐹 ) |
| 27 | 26 | sscond | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( 𝐸 ∖ ∪ ran 𝐹 ) ⊆ ( 𝐸 ∖ ∪ 𝑛 ∈ ( 1 ... 𝑘 ) ( 𝐹 ‘ 𝑛 ) ) ) |
| 28 | 4 | adantr | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → 𝐸 ⊆ ℝ ) |
| 29 | 10 28 | sstrid | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( 𝐸 ∖ ∪ 𝑛 ∈ ( 1 ... 𝑘 ) ( 𝐹 ‘ 𝑛 ) ) ⊆ ℝ ) |
| 30 | ovolss | ⊢ ( ( ( 𝐸 ∖ ∪ ran 𝐹 ) ⊆ ( 𝐸 ∖ ∪ 𝑛 ∈ ( 1 ... 𝑘 ) ( 𝐹 ‘ 𝑛 ) ) ∧ ( 𝐸 ∖ ∪ 𝑛 ∈ ( 1 ... 𝑘 ) ( 𝐹 ‘ 𝑛 ) ) ⊆ ℝ ) → ( vol* ‘ ( 𝐸 ∖ ∪ ran 𝐹 ) ) ≤ ( vol* ‘ ( 𝐸 ∖ ∪ 𝑛 ∈ ( 1 ... 𝑘 ) ( 𝐹 ‘ 𝑛 ) ) ) ) | |
| 31 | 27 29 30 | syl2anc | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( vol* ‘ ( 𝐸 ∖ ∪ ran 𝐹 ) ) ≤ ( vol* ‘ ( 𝐸 ∖ ∪ 𝑛 ∈ ( 1 ... 𝑘 ) ( 𝐹 ‘ 𝑛 ) ) ) ) |
| 32 | 9 12 15 31 | leadd2dd | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( ( vol* ‘ ( 𝐸 ∩ ∪ 𝑛 ∈ ( 1 ... 𝑘 ) ( 𝐹 ‘ 𝑛 ) ) ) + ( vol* ‘ ( 𝐸 ∖ ∪ ran 𝐹 ) ) ) ≤ ( ( vol* ‘ ( 𝐸 ∩ ∪ 𝑛 ∈ ( 1 ... 𝑘 ) ( 𝐹 ‘ 𝑛 ) ) ) + ( vol* ‘ ( 𝐸 ∖ ∪ 𝑛 ∈ ( 1 ... 𝑘 ) ( 𝐹 ‘ 𝑛 ) ) ) ) ) |
| 33 | oveq2 | ⊢ ( 𝑧 = 1 → ( 1 ... 𝑧 ) = ( 1 ... 1 ) ) | |
| 34 | 33 | iuneq1d | ⊢ ( 𝑧 = 1 → ∪ 𝑛 ∈ ( 1 ... 𝑧 ) ( 𝐹 ‘ 𝑛 ) = ∪ 𝑛 ∈ ( 1 ... 1 ) ( 𝐹 ‘ 𝑛 ) ) |
| 35 | 34 | eleq1d | ⊢ ( 𝑧 = 1 → ( ∪ 𝑛 ∈ ( 1 ... 𝑧 ) ( 𝐹 ‘ 𝑛 ) ∈ dom vol ↔ ∪ 𝑛 ∈ ( 1 ... 1 ) ( 𝐹 ‘ 𝑛 ) ∈ dom vol ) ) |
| 36 | 34 | ineq2d | ⊢ ( 𝑧 = 1 → ( 𝐸 ∩ ∪ 𝑛 ∈ ( 1 ... 𝑧 ) ( 𝐹 ‘ 𝑛 ) ) = ( 𝐸 ∩ ∪ 𝑛 ∈ ( 1 ... 1 ) ( 𝐹 ‘ 𝑛 ) ) ) |
| 37 | 36 | fveq2d | ⊢ ( 𝑧 = 1 → ( vol* ‘ ( 𝐸 ∩ ∪ 𝑛 ∈ ( 1 ... 𝑧 ) ( 𝐹 ‘ 𝑛 ) ) ) = ( vol* ‘ ( 𝐸 ∩ ∪ 𝑛 ∈ ( 1 ... 1 ) ( 𝐹 ‘ 𝑛 ) ) ) ) |
| 38 | fveq2 | ⊢ ( 𝑧 = 1 → ( seq 1 ( + , 𝐻 ) ‘ 𝑧 ) = ( seq 1 ( + , 𝐻 ) ‘ 1 ) ) | |
| 39 | 37 38 | eqeq12d | ⊢ ( 𝑧 = 1 → ( ( vol* ‘ ( 𝐸 ∩ ∪ 𝑛 ∈ ( 1 ... 𝑧 ) ( 𝐹 ‘ 𝑛 ) ) ) = ( seq 1 ( + , 𝐻 ) ‘ 𝑧 ) ↔ ( vol* ‘ ( 𝐸 ∩ ∪ 𝑛 ∈ ( 1 ... 1 ) ( 𝐹 ‘ 𝑛 ) ) ) = ( seq 1 ( + , 𝐻 ) ‘ 1 ) ) ) |
| 40 | 35 39 | anbi12d | ⊢ ( 𝑧 = 1 → ( ( ∪ 𝑛 ∈ ( 1 ... 𝑧 ) ( 𝐹 ‘ 𝑛 ) ∈ dom vol ∧ ( vol* ‘ ( 𝐸 ∩ ∪ 𝑛 ∈ ( 1 ... 𝑧 ) ( 𝐹 ‘ 𝑛 ) ) ) = ( seq 1 ( + , 𝐻 ) ‘ 𝑧 ) ) ↔ ( ∪ 𝑛 ∈ ( 1 ... 1 ) ( 𝐹 ‘ 𝑛 ) ∈ dom vol ∧ ( vol* ‘ ( 𝐸 ∩ ∪ 𝑛 ∈ ( 1 ... 1 ) ( 𝐹 ‘ 𝑛 ) ) ) = ( seq 1 ( + , 𝐻 ) ‘ 1 ) ) ) ) |
| 41 | 40 | imbi2d | ⊢ ( 𝑧 = 1 → ( ( 𝜑 → ( ∪ 𝑛 ∈ ( 1 ... 𝑧 ) ( 𝐹 ‘ 𝑛 ) ∈ dom vol ∧ ( vol* ‘ ( 𝐸 ∩ ∪ 𝑛 ∈ ( 1 ... 𝑧 ) ( 𝐹 ‘ 𝑛 ) ) ) = ( seq 1 ( + , 𝐻 ) ‘ 𝑧 ) ) ) ↔ ( 𝜑 → ( ∪ 𝑛 ∈ ( 1 ... 1 ) ( 𝐹 ‘ 𝑛 ) ∈ dom vol ∧ ( vol* ‘ ( 𝐸 ∩ ∪ 𝑛 ∈ ( 1 ... 1 ) ( 𝐹 ‘ 𝑛 ) ) ) = ( seq 1 ( + , 𝐻 ) ‘ 1 ) ) ) ) ) |
| 42 | oveq2 | ⊢ ( 𝑧 = 𝑘 → ( 1 ... 𝑧 ) = ( 1 ... 𝑘 ) ) | |
| 43 | 42 | iuneq1d | ⊢ ( 𝑧 = 𝑘 → ∪ 𝑛 ∈ ( 1 ... 𝑧 ) ( 𝐹 ‘ 𝑛 ) = ∪ 𝑛 ∈ ( 1 ... 𝑘 ) ( 𝐹 ‘ 𝑛 ) ) |
| 44 | 43 | eleq1d | ⊢ ( 𝑧 = 𝑘 → ( ∪ 𝑛 ∈ ( 1 ... 𝑧 ) ( 𝐹 ‘ 𝑛 ) ∈ dom vol ↔ ∪ 𝑛 ∈ ( 1 ... 𝑘 ) ( 𝐹 ‘ 𝑛 ) ∈ dom vol ) ) |
| 45 | 43 | ineq2d | ⊢ ( 𝑧 = 𝑘 → ( 𝐸 ∩ ∪ 𝑛 ∈ ( 1 ... 𝑧 ) ( 𝐹 ‘ 𝑛 ) ) = ( 𝐸 ∩ ∪ 𝑛 ∈ ( 1 ... 𝑘 ) ( 𝐹 ‘ 𝑛 ) ) ) |
| 46 | 45 | fveq2d | ⊢ ( 𝑧 = 𝑘 → ( vol* ‘ ( 𝐸 ∩ ∪ 𝑛 ∈ ( 1 ... 𝑧 ) ( 𝐹 ‘ 𝑛 ) ) ) = ( vol* ‘ ( 𝐸 ∩ ∪ 𝑛 ∈ ( 1 ... 𝑘 ) ( 𝐹 ‘ 𝑛 ) ) ) ) |
| 47 | fveq2 | ⊢ ( 𝑧 = 𝑘 → ( seq 1 ( + , 𝐻 ) ‘ 𝑧 ) = ( seq 1 ( + , 𝐻 ) ‘ 𝑘 ) ) | |
| 48 | 46 47 | eqeq12d | ⊢ ( 𝑧 = 𝑘 → ( ( vol* ‘ ( 𝐸 ∩ ∪ 𝑛 ∈ ( 1 ... 𝑧 ) ( 𝐹 ‘ 𝑛 ) ) ) = ( seq 1 ( + , 𝐻 ) ‘ 𝑧 ) ↔ ( vol* ‘ ( 𝐸 ∩ ∪ 𝑛 ∈ ( 1 ... 𝑘 ) ( 𝐹 ‘ 𝑛 ) ) ) = ( seq 1 ( + , 𝐻 ) ‘ 𝑘 ) ) ) |
| 49 | 44 48 | anbi12d | ⊢ ( 𝑧 = 𝑘 → ( ( ∪ 𝑛 ∈ ( 1 ... 𝑧 ) ( 𝐹 ‘ 𝑛 ) ∈ dom vol ∧ ( vol* ‘ ( 𝐸 ∩ ∪ 𝑛 ∈ ( 1 ... 𝑧 ) ( 𝐹 ‘ 𝑛 ) ) ) = ( seq 1 ( + , 𝐻 ) ‘ 𝑧 ) ) ↔ ( ∪ 𝑛 ∈ ( 1 ... 𝑘 ) ( 𝐹 ‘ 𝑛 ) ∈ dom vol ∧ ( vol* ‘ ( 𝐸 ∩ ∪ 𝑛 ∈ ( 1 ... 𝑘 ) ( 𝐹 ‘ 𝑛 ) ) ) = ( seq 1 ( + , 𝐻 ) ‘ 𝑘 ) ) ) ) |
| 50 | 49 | imbi2d | ⊢ ( 𝑧 = 𝑘 → ( ( 𝜑 → ( ∪ 𝑛 ∈ ( 1 ... 𝑧 ) ( 𝐹 ‘ 𝑛 ) ∈ dom vol ∧ ( vol* ‘ ( 𝐸 ∩ ∪ 𝑛 ∈ ( 1 ... 𝑧 ) ( 𝐹 ‘ 𝑛 ) ) ) = ( seq 1 ( + , 𝐻 ) ‘ 𝑧 ) ) ) ↔ ( 𝜑 → ( ∪ 𝑛 ∈ ( 1 ... 𝑘 ) ( 𝐹 ‘ 𝑛 ) ∈ dom vol ∧ ( vol* ‘ ( 𝐸 ∩ ∪ 𝑛 ∈ ( 1 ... 𝑘 ) ( 𝐹 ‘ 𝑛 ) ) ) = ( seq 1 ( + , 𝐻 ) ‘ 𝑘 ) ) ) ) ) |
| 51 | oveq2 | ⊢ ( 𝑧 = ( 𝑘 + 1 ) → ( 1 ... 𝑧 ) = ( 1 ... ( 𝑘 + 1 ) ) ) | |
| 52 | 51 | iuneq1d | ⊢ ( 𝑧 = ( 𝑘 + 1 ) → ∪ 𝑛 ∈ ( 1 ... 𝑧 ) ( 𝐹 ‘ 𝑛 ) = ∪ 𝑛 ∈ ( 1 ... ( 𝑘 + 1 ) ) ( 𝐹 ‘ 𝑛 ) ) |
| 53 | 52 | eleq1d | ⊢ ( 𝑧 = ( 𝑘 + 1 ) → ( ∪ 𝑛 ∈ ( 1 ... 𝑧 ) ( 𝐹 ‘ 𝑛 ) ∈ dom vol ↔ ∪ 𝑛 ∈ ( 1 ... ( 𝑘 + 1 ) ) ( 𝐹 ‘ 𝑛 ) ∈ dom vol ) ) |
| 54 | 52 | ineq2d | ⊢ ( 𝑧 = ( 𝑘 + 1 ) → ( 𝐸 ∩ ∪ 𝑛 ∈ ( 1 ... 𝑧 ) ( 𝐹 ‘ 𝑛 ) ) = ( 𝐸 ∩ ∪ 𝑛 ∈ ( 1 ... ( 𝑘 + 1 ) ) ( 𝐹 ‘ 𝑛 ) ) ) |
| 55 | 54 | fveq2d | ⊢ ( 𝑧 = ( 𝑘 + 1 ) → ( vol* ‘ ( 𝐸 ∩ ∪ 𝑛 ∈ ( 1 ... 𝑧 ) ( 𝐹 ‘ 𝑛 ) ) ) = ( vol* ‘ ( 𝐸 ∩ ∪ 𝑛 ∈ ( 1 ... ( 𝑘 + 1 ) ) ( 𝐹 ‘ 𝑛 ) ) ) ) |
| 56 | fveq2 | ⊢ ( 𝑧 = ( 𝑘 + 1 ) → ( seq 1 ( + , 𝐻 ) ‘ 𝑧 ) = ( seq 1 ( + , 𝐻 ) ‘ ( 𝑘 + 1 ) ) ) | |
| 57 | 55 56 | eqeq12d | ⊢ ( 𝑧 = ( 𝑘 + 1 ) → ( ( vol* ‘ ( 𝐸 ∩ ∪ 𝑛 ∈ ( 1 ... 𝑧 ) ( 𝐹 ‘ 𝑛 ) ) ) = ( seq 1 ( + , 𝐻 ) ‘ 𝑧 ) ↔ ( vol* ‘ ( 𝐸 ∩ ∪ 𝑛 ∈ ( 1 ... ( 𝑘 + 1 ) ) ( 𝐹 ‘ 𝑛 ) ) ) = ( seq 1 ( + , 𝐻 ) ‘ ( 𝑘 + 1 ) ) ) ) |
| 58 | 53 57 | anbi12d | ⊢ ( 𝑧 = ( 𝑘 + 1 ) → ( ( ∪ 𝑛 ∈ ( 1 ... 𝑧 ) ( 𝐹 ‘ 𝑛 ) ∈ dom vol ∧ ( vol* ‘ ( 𝐸 ∩ ∪ 𝑛 ∈ ( 1 ... 𝑧 ) ( 𝐹 ‘ 𝑛 ) ) ) = ( seq 1 ( + , 𝐻 ) ‘ 𝑧 ) ) ↔ ( ∪ 𝑛 ∈ ( 1 ... ( 𝑘 + 1 ) ) ( 𝐹 ‘ 𝑛 ) ∈ dom vol ∧ ( vol* ‘ ( 𝐸 ∩ ∪ 𝑛 ∈ ( 1 ... ( 𝑘 + 1 ) ) ( 𝐹 ‘ 𝑛 ) ) ) = ( seq 1 ( + , 𝐻 ) ‘ ( 𝑘 + 1 ) ) ) ) ) |
| 59 | 58 | imbi2d | ⊢ ( 𝑧 = ( 𝑘 + 1 ) → ( ( 𝜑 → ( ∪ 𝑛 ∈ ( 1 ... 𝑧 ) ( 𝐹 ‘ 𝑛 ) ∈ dom vol ∧ ( vol* ‘ ( 𝐸 ∩ ∪ 𝑛 ∈ ( 1 ... 𝑧 ) ( 𝐹 ‘ 𝑛 ) ) ) = ( seq 1 ( + , 𝐻 ) ‘ 𝑧 ) ) ) ↔ ( 𝜑 → ( ∪ 𝑛 ∈ ( 1 ... ( 𝑘 + 1 ) ) ( 𝐹 ‘ 𝑛 ) ∈ dom vol ∧ ( vol* ‘ ( 𝐸 ∩ ∪ 𝑛 ∈ ( 1 ... ( 𝑘 + 1 ) ) ( 𝐹 ‘ 𝑛 ) ) ) = ( seq 1 ( + , 𝐻 ) ‘ ( 𝑘 + 1 ) ) ) ) ) ) |
| 60 | 1z | ⊢ 1 ∈ ℤ | |
| 61 | fzsn | ⊢ ( 1 ∈ ℤ → ( 1 ... 1 ) = { 1 } ) | |
| 62 | iuneq1 | ⊢ ( ( 1 ... 1 ) = { 1 } → ∪ 𝑛 ∈ ( 1 ... 1 ) ( 𝐹 ‘ 𝑛 ) = ∪ 𝑛 ∈ { 1 } ( 𝐹 ‘ 𝑛 ) ) | |
| 63 | 60 61 62 | mp2b | ⊢ ∪ 𝑛 ∈ ( 1 ... 1 ) ( 𝐹 ‘ 𝑛 ) = ∪ 𝑛 ∈ { 1 } ( 𝐹 ‘ 𝑛 ) |
| 64 | 1ex | ⊢ 1 ∈ V | |
| 65 | fveq2 | ⊢ ( 𝑛 = 1 → ( 𝐹 ‘ 𝑛 ) = ( 𝐹 ‘ 1 ) ) | |
| 66 | 64 65 | iunxsn | ⊢ ∪ 𝑛 ∈ { 1 } ( 𝐹 ‘ 𝑛 ) = ( 𝐹 ‘ 1 ) |
| 67 | 63 66 | eqtri | ⊢ ∪ 𝑛 ∈ ( 1 ... 1 ) ( 𝐹 ‘ 𝑛 ) = ( 𝐹 ‘ 1 ) |
| 68 | 1nn | ⊢ 1 ∈ ℕ | |
| 69 | ffvelcdm | ⊢ ( ( 𝐹 : ℕ ⟶ dom vol ∧ 1 ∈ ℕ ) → ( 𝐹 ‘ 1 ) ∈ dom vol ) | |
| 70 | 1 68 69 | sylancl | ⊢ ( 𝜑 → ( 𝐹 ‘ 1 ) ∈ dom vol ) |
| 71 | 67 70 | eqeltrid | ⊢ ( 𝜑 → ∪ 𝑛 ∈ ( 1 ... 1 ) ( 𝐹 ‘ 𝑛 ) ∈ dom vol ) |
| 72 | 65 | ineq2d | ⊢ ( 𝑛 = 1 → ( 𝐸 ∩ ( 𝐹 ‘ 𝑛 ) ) = ( 𝐸 ∩ ( 𝐹 ‘ 1 ) ) ) |
| 73 | 72 | fveq2d | ⊢ ( 𝑛 = 1 → ( vol* ‘ ( 𝐸 ∩ ( 𝐹 ‘ 𝑛 ) ) ) = ( vol* ‘ ( 𝐸 ∩ ( 𝐹 ‘ 1 ) ) ) ) |
| 74 | fvex | ⊢ ( vol* ‘ ( 𝐸 ∩ ( 𝐹 ‘ 1 ) ) ) ∈ V | |
| 75 | 73 3 74 | fvmpt | ⊢ ( 1 ∈ ℕ → ( 𝐻 ‘ 1 ) = ( vol* ‘ ( 𝐸 ∩ ( 𝐹 ‘ 1 ) ) ) ) |
| 76 | 68 75 | ax-mp | ⊢ ( 𝐻 ‘ 1 ) = ( vol* ‘ ( 𝐸 ∩ ( 𝐹 ‘ 1 ) ) ) |
| 77 | seq1 | ⊢ ( 1 ∈ ℤ → ( seq 1 ( + , 𝐻 ) ‘ 1 ) = ( 𝐻 ‘ 1 ) ) | |
| 78 | 60 77 | ax-mp | ⊢ ( seq 1 ( + , 𝐻 ) ‘ 1 ) = ( 𝐻 ‘ 1 ) |
| 79 | 67 | ineq2i | ⊢ ( 𝐸 ∩ ∪ 𝑛 ∈ ( 1 ... 1 ) ( 𝐹 ‘ 𝑛 ) ) = ( 𝐸 ∩ ( 𝐹 ‘ 1 ) ) |
| 80 | 79 | fveq2i | ⊢ ( vol* ‘ ( 𝐸 ∩ ∪ 𝑛 ∈ ( 1 ... 1 ) ( 𝐹 ‘ 𝑛 ) ) ) = ( vol* ‘ ( 𝐸 ∩ ( 𝐹 ‘ 1 ) ) ) |
| 81 | 76 78 80 | 3eqtr4ri | ⊢ ( vol* ‘ ( 𝐸 ∩ ∪ 𝑛 ∈ ( 1 ... 1 ) ( 𝐹 ‘ 𝑛 ) ) ) = ( seq 1 ( + , 𝐻 ) ‘ 1 ) |
| 82 | 71 81 | jctir | ⊢ ( 𝜑 → ( ∪ 𝑛 ∈ ( 1 ... 1 ) ( 𝐹 ‘ 𝑛 ) ∈ dom vol ∧ ( vol* ‘ ( 𝐸 ∩ ∪ 𝑛 ∈ ( 1 ... 1 ) ( 𝐹 ‘ 𝑛 ) ) ) = ( seq 1 ( + , 𝐻 ) ‘ 1 ) ) ) |
| 83 | peano2nn | ⊢ ( 𝑘 ∈ ℕ → ( 𝑘 + 1 ) ∈ ℕ ) | |
| 84 | ffvelcdm | ⊢ ( ( 𝐹 : ℕ ⟶ dom vol ∧ ( 𝑘 + 1 ) ∈ ℕ ) → ( 𝐹 ‘ ( 𝑘 + 1 ) ) ∈ dom vol ) | |
| 85 | 1 83 84 | syl2an | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( 𝐹 ‘ ( 𝑘 + 1 ) ) ∈ dom vol ) |
| 86 | unmbl | ⊢ ( ( ∪ 𝑛 ∈ ( 1 ... 𝑘 ) ( 𝐹 ‘ 𝑛 ) ∈ dom vol ∧ ( 𝐹 ‘ ( 𝑘 + 1 ) ) ∈ dom vol ) → ( ∪ 𝑛 ∈ ( 1 ... 𝑘 ) ( 𝐹 ‘ 𝑛 ) ∪ ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) ∈ dom vol ) | |
| 87 | 86 | ex | ⊢ ( ∪ 𝑛 ∈ ( 1 ... 𝑘 ) ( 𝐹 ‘ 𝑛 ) ∈ dom vol → ( ( 𝐹 ‘ ( 𝑘 + 1 ) ) ∈ dom vol → ( ∪ 𝑛 ∈ ( 1 ... 𝑘 ) ( 𝐹 ‘ 𝑛 ) ∪ ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) ∈ dom vol ) ) |
| 88 | 85 87 | syl5com | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( ∪ 𝑛 ∈ ( 1 ... 𝑘 ) ( 𝐹 ‘ 𝑛 ) ∈ dom vol → ( ∪ 𝑛 ∈ ( 1 ... 𝑘 ) ( 𝐹 ‘ 𝑛 ) ∪ ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) ∈ dom vol ) ) |
| 89 | simpr | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → 𝑘 ∈ ℕ ) | |
| 90 | nnuz | ⊢ ℕ = ( ℤ≥ ‘ 1 ) | |
| 91 | 89 90 | eleqtrdi | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → 𝑘 ∈ ( ℤ≥ ‘ 1 ) ) |
| 92 | fzsuc | ⊢ ( 𝑘 ∈ ( ℤ≥ ‘ 1 ) → ( 1 ... ( 𝑘 + 1 ) ) = ( ( 1 ... 𝑘 ) ∪ { ( 𝑘 + 1 ) } ) ) | |
| 93 | iuneq1 | ⊢ ( ( 1 ... ( 𝑘 + 1 ) ) = ( ( 1 ... 𝑘 ) ∪ { ( 𝑘 + 1 ) } ) → ∪ 𝑛 ∈ ( 1 ... ( 𝑘 + 1 ) ) ( 𝐹 ‘ 𝑛 ) = ∪ 𝑛 ∈ ( ( 1 ... 𝑘 ) ∪ { ( 𝑘 + 1 ) } ) ( 𝐹 ‘ 𝑛 ) ) | |
| 94 | 91 92 93 | 3syl | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ∪ 𝑛 ∈ ( 1 ... ( 𝑘 + 1 ) ) ( 𝐹 ‘ 𝑛 ) = ∪ 𝑛 ∈ ( ( 1 ... 𝑘 ) ∪ { ( 𝑘 + 1 ) } ) ( 𝐹 ‘ 𝑛 ) ) |
| 95 | iunxun | ⊢ ∪ 𝑛 ∈ ( ( 1 ... 𝑘 ) ∪ { ( 𝑘 + 1 ) } ) ( 𝐹 ‘ 𝑛 ) = ( ∪ 𝑛 ∈ ( 1 ... 𝑘 ) ( 𝐹 ‘ 𝑛 ) ∪ ∪ 𝑛 ∈ { ( 𝑘 + 1 ) } ( 𝐹 ‘ 𝑛 ) ) | |
| 96 | ovex | ⊢ ( 𝑘 + 1 ) ∈ V | |
| 97 | fveq2 | ⊢ ( 𝑛 = ( 𝑘 + 1 ) → ( 𝐹 ‘ 𝑛 ) = ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) | |
| 98 | 96 97 | iunxsn | ⊢ ∪ 𝑛 ∈ { ( 𝑘 + 1 ) } ( 𝐹 ‘ 𝑛 ) = ( 𝐹 ‘ ( 𝑘 + 1 ) ) |
| 99 | 98 | uneq2i | ⊢ ( ∪ 𝑛 ∈ ( 1 ... 𝑘 ) ( 𝐹 ‘ 𝑛 ) ∪ ∪ 𝑛 ∈ { ( 𝑘 + 1 ) } ( 𝐹 ‘ 𝑛 ) ) = ( ∪ 𝑛 ∈ ( 1 ... 𝑘 ) ( 𝐹 ‘ 𝑛 ) ∪ ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) |
| 100 | 95 99 | eqtri | ⊢ ∪ 𝑛 ∈ ( ( 1 ... 𝑘 ) ∪ { ( 𝑘 + 1 ) } ) ( 𝐹 ‘ 𝑛 ) = ( ∪ 𝑛 ∈ ( 1 ... 𝑘 ) ( 𝐹 ‘ 𝑛 ) ∪ ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) |
| 101 | 94 100 | eqtrdi | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ∪ 𝑛 ∈ ( 1 ... ( 𝑘 + 1 ) ) ( 𝐹 ‘ 𝑛 ) = ( ∪ 𝑛 ∈ ( 1 ... 𝑘 ) ( 𝐹 ‘ 𝑛 ) ∪ ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) ) |
| 102 | 101 | eleq1d | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( ∪ 𝑛 ∈ ( 1 ... ( 𝑘 + 1 ) ) ( 𝐹 ‘ 𝑛 ) ∈ dom vol ↔ ( ∪ 𝑛 ∈ ( 1 ... 𝑘 ) ( 𝐹 ‘ 𝑛 ) ∪ ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) ∈ dom vol ) ) |
| 103 | 88 102 | sylibrd | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( ∪ 𝑛 ∈ ( 1 ... 𝑘 ) ( 𝐹 ‘ 𝑛 ) ∈ dom vol → ∪ 𝑛 ∈ ( 1 ... ( 𝑘 + 1 ) ) ( 𝐹 ‘ 𝑛 ) ∈ dom vol ) ) |
| 104 | oveq1 | ⊢ ( ( vol* ‘ ( 𝐸 ∩ ∪ 𝑛 ∈ ( 1 ... 𝑘 ) ( 𝐹 ‘ 𝑛 ) ) ) = ( seq 1 ( + , 𝐻 ) ‘ 𝑘 ) → ( ( vol* ‘ ( 𝐸 ∩ ∪ 𝑛 ∈ ( 1 ... 𝑘 ) ( 𝐹 ‘ 𝑛 ) ) ) + ( vol* ‘ ( 𝐸 ∩ ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) ) ) = ( ( seq 1 ( + , 𝐻 ) ‘ 𝑘 ) + ( vol* ‘ ( 𝐸 ∩ ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) ) ) ) | |
| 105 | inss1 | ⊢ ( 𝐸 ∩ ∪ 𝑛 ∈ ( 1 ... ( 𝑘 + 1 ) ) ( 𝐹 ‘ 𝑛 ) ) ⊆ 𝐸 | |
| 106 | 105 28 | sstrid | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( 𝐸 ∩ ∪ 𝑛 ∈ ( 1 ... ( 𝑘 + 1 ) ) ( 𝐹 ‘ 𝑛 ) ) ⊆ ℝ ) |
| 107 | ovolsscl | ⊢ ( ( ( 𝐸 ∩ ∪ 𝑛 ∈ ( 1 ... ( 𝑘 + 1 ) ) ( 𝐹 ‘ 𝑛 ) ) ⊆ 𝐸 ∧ 𝐸 ⊆ ℝ ∧ ( vol* ‘ 𝐸 ) ∈ ℝ ) → ( vol* ‘ ( 𝐸 ∩ ∪ 𝑛 ∈ ( 1 ... ( 𝑘 + 1 ) ) ( 𝐹 ‘ 𝑛 ) ) ) ∈ ℝ ) | |
| 108 | 105 4 7 107 | mp3an2ani | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( vol* ‘ ( 𝐸 ∩ ∪ 𝑛 ∈ ( 1 ... ( 𝑘 + 1 ) ) ( 𝐹 ‘ 𝑛 ) ) ) ∈ ℝ ) |
| 109 | mblsplit | ⊢ ( ( ( 𝐹 ‘ ( 𝑘 + 1 ) ) ∈ dom vol ∧ ( 𝐸 ∩ ∪ 𝑛 ∈ ( 1 ... ( 𝑘 + 1 ) ) ( 𝐹 ‘ 𝑛 ) ) ⊆ ℝ ∧ ( vol* ‘ ( 𝐸 ∩ ∪ 𝑛 ∈ ( 1 ... ( 𝑘 + 1 ) ) ( 𝐹 ‘ 𝑛 ) ) ) ∈ ℝ ) → ( vol* ‘ ( 𝐸 ∩ ∪ 𝑛 ∈ ( 1 ... ( 𝑘 + 1 ) ) ( 𝐹 ‘ 𝑛 ) ) ) = ( ( vol* ‘ ( ( 𝐸 ∩ ∪ 𝑛 ∈ ( 1 ... ( 𝑘 + 1 ) ) ( 𝐹 ‘ 𝑛 ) ) ∩ ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) ) + ( vol* ‘ ( ( 𝐸 ∩ ∪ 𝑛 ∈ ( 1 ... ( 𝑘 + 1 ) ) ( 𝐹 ‘ 𝑛 ) ) ∖ ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) ) ) ) | |
| 110 | 85 106 108 109 | syl3anc | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( vol* ‘ ( 𝐸 ∩ ∪ 𝑛 ∈ ( 1 ... ( 𝑘 + 1 ) ) ( 𝐹 ‘ 𝑛 ) ) ) = ( ( vol* ‘ ( ( 𝐸 ∩ ∪ 𝑛 ∈ ( 1 ... ( 𝑘 + 1 ) ) ( 𝐹 ‘ 𝑛 ) ) ∩ ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) ) + ( vol* ‘ ( ( 𝐸 ∩ ∪ 𝑛 ∈ ( 1 ... ( 𝑘 + 1 ) ) ( 𝐹 ‘ 𝑛 ) ) ∖ ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) ) ) ) |
| 111 | in32 | ⊢ ( ( 𝐸 ∩ ∪ 𝑛 ∈ ( 1 ... ( 𝑘 + 1 ) ) ( 𝐹 ‘ 𝑛 ) ) ∩ ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) = ( ( 𝐸 ∩ ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) ∩ ∪ 𝑛 ∈ ( 1 ... ( 𝑘 + 1 ) ) ( 𝐹 ‘ 𝑛 ) ) | |
| 112 | inss2 | ⊢ ( 𝐸 ∩ ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) ⊆ ( 𝐹 ‘ ( 𝑘 + 1 ) ) | |
| 113 | 83 | adantl | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( 𝑘 + 1 ) ∈ ℕ ) |
| 114 | 113 90 | eleqtrdi | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( 𝑘 + 1 ) ∈ ( ℤ≥ ‘ 1 ) ) |
| 115 | eluzfz2 | ⊢ ( ( 𝑘 + 1 ) ∈ ( ℤ≥ ‘ 1 ) → ( 𝑘 + 1 ) ∈ ( 1 ... ( 𝑘 + 1 ) ) ) | |
| 116 | 97 | ssiun2s | ⊢ ( ( 𝑘 + 1 ) ∈ ( 1 ... ( 𝑘 + 1 ) ) → ( 𝐹 ‘ ( 𝑘 + 1 ) ) ⊆ ∪ 𝑛 ∈ ( 1 ... ( 𝑘 + 1 ) ) ( 𝐹 ‘ 𝑛 ) ) |
| 117 | 114 115 116 | 3syl | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( 𝐹 ‘ ( 𝑘 + 1 ) ) ⊆ ∪ 𝑛 ∈ ( 1 ... ( 𝑘 + 1 ) ) ( 𝐹 ‘ 𝑛 ) ) |
| 118 | 112 117 | sstrid | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( 𝐸 ∩ ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) ⊆ ∪ 𝑛 ∈ ( 1 ... ( 𝑘 + 1 ) ) ( 𝐹 ‘ 𝑛 ) ) |
| 119 | dfss2 | ⊢ ( ( 𝐸 ∩ ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) ⊆ ∪ 𝑛 ∈ ( 1 ... ( 𝑘 + 1 ) ) ( 𝐹 ‘ 𝑛 ) ↔ ( ( 𝐸 ∩ ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) ∩ ∪ 𝑛 ∈ ( 1 ... ( 𝑘 + 1 ) ) ( 𝐹 ‘ 𝑛 ) ) = ( 𝐸 ∩ ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) ) | |
| 120 | 118 119 | sylib | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( ( 𝐸 ∩ ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) ∩ ∪ 𝑛 ∈ ( 1 ... ( 𝑘 + 1 ) ) ( 𝐹 ‘ 𝑛 ) ) = ( 𝐸 ∩ ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) ) |
| 121 | 111 120 | eqtrid | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( ( 𝐸 ∩ ∪ 𝑛 ∈ ( 1 ... ( 𝑘 + 1 ) ) ( 𝐹 ‘ 𝑛 ) ) ∩ ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) = ( 𝐸 ∩ ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) ) |
| 122 | 121 | fveq2d | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( vol* ‘ ( ( 𝐸 ∩ ∪ 𝑛 ∈ ( 1 ... ( 𝑘 + 1 ) ) ( 𝐹 ‘ 𝑛 ) ) ∩ ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) ) = ( vol* ‘ ( 𝐸 ∩ ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) ) ) |
| 123 | indif2 | ⊢ ( 𝐸 ∩ ( ∪ 𝑛 ∈ ( 1 ... ( 𝑘 + 1 ) ) ( 𝐹 ‘ 𝑛 ) ∖ ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) ) = ( ( 𝐸 ∩ ∪ 𝑛 ∈ ( 1 ... ( 𝑘 + 1 ) ) ( 𝐹 ‘ 𝑛 ) ) ∖ ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) | |
| 124 | uncom | ⊢ ( ∪ 𝑛 ∈ ( 1 ... 𝑘 ) ( 𝐹 ‘ 𝑛 ) ∪ ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) = ( ( 𝐹 ‘ ( 𝑘 + 1 ) ) ∪ ∪ 𝑛 ∈ ( 1 ... 𝑘 ) ( 𝐹 ‘ 𝑛 ) ) | |
| 125 | 101 124 | eqtr2di | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( ( 𝐹 ‘ ( 𝑘 + 1 ) ) ∪ ∪ 𝑛 ∈ ( 1 ... 𝑘 ) ( 𝐹 ‘ 𝑛 ) ) = ∪ 𝑛 ∈ ( 1 ... ( 𝑘 + 1 ) ) ( 𝐹 ‘ 𝑛 ) ) |
| 126 | 2 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) ∧ 𝑛 ∈ ( 1 ... 𝑘 ) ) → Disj 𝑖 ∈ ℕ ( 𝐹 ‘ 𝑖 ) ) |
| 127 | 113 | adantr | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) ∧ 𝑛 ∈ ( 1 ... 𝑘 ) ) → ( 𝑘 + 1 ) ∈ ℕ ) |
| 128 | 16 | adantl | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) ∧ 𝑛 ∈ ( 1 ... 𝑘 ) ) → 𝑛 ∈ ℕ ) |
| 129 | 128 | nnred | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) ∧ 𝑛 ∈ ( 1 ... 𝑘 ) ) → 𝑛 ∈ ℝ ) |
| 130 | elfzle2 | ⊢ ( 𝑛 ∈ ( 1 ... 𝑘 ) → 𝑛 ≤ 𝑘 ) | |
| 131 | 130 | adantl | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) ∧ 𝑛 ∈ ( 1 ... 𝑘 ) ) → 𝑛 ≤ 𝑘 ) |
| 132 | 89 | adantr | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) ∧ 𝑛 ∈ ( 1 ... 𝑘 ) ) → 𝑘 ∈ ℕ ) |
| 133 | nnleltp1 | ⊢ ( ( 𝑛 ∈ ℕ ∧ 𝑘 ∈ ℕ ) → ( 𝑛 ≤ 𝑘 ↔ 𝑛 < ( 𝑘 + 1 ) ) ) | |
| 134 | 128 132 133 | syl2anc | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) ∧ 𝑛 ∈ ( 1 ... 𝑘 ) ) → ( 𝑛 ≤ 𝑘 ↔ 𝑛 < ( 𝑘 + 1 ) ) ) |
| 135 | 131 134 | mpbid | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) ∧ 𝑛 ∈ ( 1 ... 𝑘 ) ) → 𝑛 < ( 𝑘 + 1 ) ) |
| 136 | 129 135 | gtned | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) ∧ 𝑛 ∈ ( 1 ... 𝑘 ) ) → ( 𝑘 + 1 ) ≠ 𝑛 ) |
| 137 | fveq2 | ⊢ ( 𝑖 = ( 𝑘 + 1 ) → ( 𝐹 ‘ 𝑖 ) = ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) | |
| 138 | fveq2 | ⊢ ( 𝑖 = 𝑛 → ( 𝐹 ‘ 𝑖 ) = ( 𝐹 ‘ 𝑛 ) ) | |
| 139 | 137 138 | disji2 | ⊢ ( ( Disj 𝑖 ∈ ℕ ( 𝐹 ‘ 𝑖 ) ∧ ( ( 𝑘 + 1 ) ∈ ℕ ∧ 𝑛 ∈ ℕ ) ∧ ( 𝑘 + 1 ) ≠ 𝑛 ) → ( ( 𝐹 ‘ ( 𝑘 + 1 ) ) ∩ ( 𝐹 ‘ 𝑛 ) ) = ∅ ) |
| 140 | 126 127 128 136 139 | syl121anc | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) ∧ 𝑛 ∈ ( 1 ... 𝑘 ) ) → ( ( 𝐹 ‘ ( 𝑘 + 1 ) ) ∩ ( 𝐹 ‘ 𝑛 ) ) = ∅ ) |
| 141 | 140 | iuneq2dv | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ∪ 𝑛 ∈ ( 1 ... 𝑘 ) ( ( 𝐹 ‘ ( 𝑘 + 1 ) ) ∩ ( 𝐹 ‘ 𝑛 ) ) = ∪ 𝑛 ∈ ( 1 ... 𝑘 ) ∅ ) |
| 142 | iunin2 | ⊢ ∪ 𝑛 ∈ ( 1 ... 𝑘 ) ( ( 𝐹 ‘ ( 𝑘 + 1 ) ) ∩ ( 𝐹 ‘ 𝑛 ) ) = ( ( 𝐹 ‘ ( 𝑘 + 1 ) ) ∩ ∪ 𝑛 ∈ ( 1 ... 𝑘 ) ( 𝐹 ‘ 𝑛 ) ) | |
| 143 | iun0 | ⊢ ∪ 𝑛 ∈ ( 1 ... 𝑘 ) ∅ = ∅ | |
| 144 | 141 142 143 | 3eqtr3g | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( ( 𝐹 ‘ ( 𝑘 + 1 ) ) ∩ ∪ 𝑛 ∈ ( 1 ... 𝑘 ) ( 𝐹 ‘ 𝑛 ) ) = ∅ ) |
| 145 | uneqdifeq | ⊢ ( ( ( 𝐹 ‘ ( 𝑘 + 1 ) ) ⊆ ∪ 𝑛 ∈ ( 1 ... ( 𝑘 + 1 ) ) ( 𝐹 ‘ 𝑛 ) ∧ ( ( 𝐹 ‘ ( 𝑘 + 1 ) ) ∩ ∪ 𝑛 ∈ ( 1 ... 𝑘 ) ( 𝐹 ‘ 𝑛 ) ) = ∅ ) → ( ( ( 𝐹 ‘ ( 𝑘 + 1 ) ) ∪ ∪ 𝑛 ∈ ( 1 ... 𝑘 ) ( 𝐹 ‘ 𝑛 ) ) = ∪ 𝑛 ∈ ( 1 ... ( 𝑘 + 1 ) ) ( 𝐹 ‘ 𝑛 ) ↔ ( ∪ 𝑛 ∈ ( 1 ... ( 𝑘 + 1 ) ) ( 𝐹 ‘ 𝑛 ) ∖ ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) = ∪ 𝑛 ∈ ( 1 ... 𝑘 ) ( 𝐹 ‘ 𝑛 ) ) ) | |
| 146 | 117 144 145 | syl2anc | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( ( ( 𝐹 ‘ ( 𝑘 + 1 ) ) ∪ ∪ 𝑛 ∈ ( 1 ... 𝑘 ) ( 𝐹 ‘ 𝑛 ) ) = ∪ 𝑛 ∈ ( 1 ... ( 𝑘 + 1 ) ) ( 𝐹 ‘ 𝑛 ) ↔ ( ∪ 𝑛 ∈ ( 1 ... ( 𝑘 + 1 ) ) ( 𝐹 ‘ 𝑛 ) ∖ ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) = ∪ 𝑛 ∈ ( 1 ... 𝑘 ) ( 𝐹 ‘ 𝑛 ) ) ) |
| 147 | 125 146 | mpbid | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( ∪ 𝑛 ∈ ( 1 ... ( 𝑘 + 1 ) ) ( 𝐹 ‘ 𝑛 ) ∖ ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) = ∪ 𝑛 ∈ ( 1 ... 𝑘 ) ( 𝐹 ‘ 𝑛 ) ) |
| 148 | 147 | ineq2d | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( 𝐸 ∩ ( ∪ 𝑛 ∈ ( 1 ... ( 𝑘 + 1 ) ) ( 𝐹 ‘ 𝑛 ) ∖ ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) ) = ( 𝐸 ∩ ∪ 𝑛 ∈ ( 1 ... 𝑘 ) ( 𝐹 ‘ 𝑛 ) ) ) |
| 149 | 123 148 | eqtr3id | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( ( 𝐸 ∩ ∪ 𝑛 ∈ ( 1 ... ( 𝑘 + 1 ) ) ( 𝐹 ‘ 𝑛 ) ) ∖ ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) = ( 𝐸 ∩ ∪ 𝑛 ∈ ( 1 ... 𝑘 ) ( 𝐹 ‘ 𝑛 ) ) ) |
| 150 | 149 | fveq2d | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( vol* ‘ ( ( 𝐸 ∩ ∪ 𝑛 ∈ ( 1 ... ( 𝑘 + 1 ) ) ( 𝐹 ‘ 𝑛 ) ) ∖ ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) ) = ( vol* ‘ ( 𝐸 ∩ ∪ 𝑛 ∈ ( 1 ... 𝑘 ) ( 𝐹 ‘ 𝑛 ) ) ) ) |
| 151 | 122 150 | oveq12d | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( ( vol* ‘ ( ( 𝐸 ∩ ∪ 𝑛 ∈ ( 1 ... ( 𝑘 + 1 ) ) ( 𝐹 ‘ 𝑛 ) ) ∩ ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) ) + ( vol* ‘ ( ( 𝐸 ∩ ∪ 𝑛 ∈ ( 1 ... ( 𝑘 + 1 ) ) ( 𝐹 ‘ 𝑛 ) ) ∖ ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) ) ) = ( ( vol* ‘ ( 𝐸 ∩ ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) ) + ( vol* ‘ ( 𝐸 ∩ ∪ 𝑛 ∈ ( 1 ... 𝑘 ) ( 𝐹 ‘ 𝑛 ) ) ) ) ) |
| 152 | inss1 | ⊢ ( 𝐸 ∩ ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) ⊆ 𝐸 | |
| 153 | ovolsscl | ⊢ ( ( ( 𝐸 ∩ ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) ⊆ 𝐸 ∧ 𝐸 ⊆ ℝ ∧ ( vol* ‘ 𝐸 ) ∈ ℝ ) → ( vol* ‘ ( 𝐸 ∩ ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) ) ∈ ℝ ) | |
| 154 | 152 4 7 153 | mp3an2ani | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( vol* ‘ ( 𝐸 ∩ ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) ) ∈ ℝ ) |
| 155 | 154 | recnd | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( vol* ‘ ( 𝐸 ∩ ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) ) ∈ ℂ ) |
| 156 | 15 | recnd | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( vol* ‘ ( 𝐸 ∩ ∪ 𝑛 ∈ ( 1 ... 𝑘 ) ( 𝐹 ‘ 𝑛 ) ) ) ∈ ℂ ) |
| 157 | 155 156 | addcomd | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( ( vol* ‘ ( 𝐸 ∩ ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) ) + ( vol* ‘ ( 𝐸 ∩ ∪ 𝑛 ∈ ( 1 ... 𝑘 ) ( 𝐹 ‘ 𝑛 ) ) ) ) = ( ( vol* ‘ ( 𝐸 ∩ ∪ 𝑛 ∈ ( 1 ... 𝑘 ) ( 𝐹 ‘ 𝑛 ) ) ) + ( vol* ‘ ( 𝐸 ∩ ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) ) ) ) |
| 158 | 110 151 157 | 3eqtrd | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( vol* ‘ ( 𝐸 ∩ ∪ 𝑛 ∈ ( 1 ... ( 𝑘 + 1 ) ) ( 𝐹 ‘ 𝑛 ) ) ) = ( ( vol* ‘ ( 𝐸 ∩ ∪ 𝑛 ∈ ( 1 ... 𝑘 ) ( 𝐹 ‘ 𝑛 ) ) ) + ( vol* ‘ ( 𝐸 ∩ ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) ) ) ) |
| 159 | seqp1 | ⊢ ( 𝑘 ∈ ( ℤ≥ ‘ 1 ) → ( seq 1 ( + , 𝐻 ) ‘ ( 𝑘 + 1 ) ) = ( ( seq 1 ( + , 𝐻 ) ‘ 𝑘 ) + ( 𝐻 ‘ ( 𝑘 + 1 ) ) ) ) | |
| 160 | 91 159 | syl | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( seq 1 ( + , 𝐻 ) ‘ ( 𝑘 + 1 ) ) = ( ( seq 1 ( + , 𝐻 ) ‘ 𝑘 ) + ( 𝐻 ‘ ( 𝑘 + 1 ) ) ) ) |
| 161 | 97 | ineq2d | ⊢ ( 𝑛 = ( 𝑘 + 1 ) → ( 𝐸 ∩ ( 𝐹 ‘ 𝑛 ) ) = ( 𝐸 ∩ ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) ) |
| 162 | 161 | fveq2d | ⊢ ( 𝑛 = ( 𝑘 + 1 ) → ( vol* ‘ ( 𝐸 ∩ ( 𝐹 ‘ 𝑛 ) ) ) = ( vol* ‘ ( 𝐸 ∩ ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) ) ) |
| 163 | fvex | ⊢ ( vol* ‘ ( 𝐸 ∩ ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) ) ∈ V | |
| 164 | 162 3 163 | fvmpt | ⊢ ( ( 𝑘 + 1 ) ∈ ℕ → ( 𝐻 ‘ ( 𝑘 + 1 ) ) = ( vol* ‘ ( 𝐸 ∩ ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) ) ) |
| 165 | 113 164 | syl | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( 𝐻 ‘ ( 𝑘 + 1 ) ) = ( vol* ‘ ( 𝐸 ∩ ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) ) ) |
| 166 | 165 | oveq2d | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( ( seq 1 ( + , 𝐻 ) ‘ 𝑘 ) + ( 𝐻 ‘ ( 𝑘 + 1 ) ) ) = ( ( seq 1 ( + , 𝐻 ) ‘ 𝑘 ) + ( vol* ‘ ( 𝐸 ∩ ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) ) ) ) |
| 167 | 160 166 | eqtrd | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( seq 1 ( + , 𝐻 ) ‘ ( 𝑘 + 1 ) ) = ( ( seq 1 ( + , 𝐻 ) ‘ 𝑘 ) + ( vol* ‘ ( 𝐸 ∩ ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) ) ) ) |
| 168 | 158 167 | eqeq12d | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( ( vol* ‘ ( 𝐸 ∩ ∪ 𝑛 ∈ ( 1 ... ( 𝑘 + 1 ) ) ( 𝐹 ‘ 𝑛 ) ) ) = ( seq 1 ( + , 𝐻 ) ‘ ( 𝑘 + 1 ) ) ↔ ( ( vol* ‘ ( 𝐸 ∩ ∪ 𝑛 ∈ ( 1 ... 𝑘 ) ( 𝐹 ‘ 𝑛 ) ) ) + ( vol* ‘ ( 𝐸 ∩ ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) ) ) = ( ( seq 1 ( + , 𝐻 ) ‘ 𝑘 ) + ( vol* ‘ ( 𝐸 ∩ ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) ) ) ) ) |
| 169 | 104 168 | imbitrrid | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( ( vol* ‘ ( 𝐸 ∩ ∪ 𝑛 ∈ ( 1 ... 𝑘 ) ( 𝐹 ‘ 𝑛 ) ) ) = ( seq 1 ( + , 𝐻 ) ‘ 𝑘 ) → ( vol* ‘ ( 𝐸 ∩ ∪ 𝑛 ∈ ( 1 ... ( 𝑘 + 1 ) ) ( 𝐹 ‘ 𝑛 ) ) ) = ( seq 1 ( + , 𝐻 ) ‘ ( 𝑘 + 1 ) ) ) ) |
| 170 | 103 169 | anim12d | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( ( ∪ 𝑛 ∈ ( 1 ... 𝑘 ) ( 𝐹 ‘ 𝑛 ) ∈ dom vol ∧ ( vol* ‘ ( 𝐸 ∩ ∪ 𝑛 ∈ ( 1 ... 𝑘 ) ( 𝐹 ‘ 𝑛 ) ) ) = ( seq 1 ( + , 𝐻 ) ‘ 𝑘 ) ) → ( ∪ 𝑛 ∈ ( 1 ... ( 𝑘 + 1 ) ) ( 𝐹 ‘ 𝑛 ) ∈ dom vol ∧ ( vol* ‘ ( 𝐸 ∩ ∪ 𝑛 ∈ ( 1 ... ( 𝑘 + 1 ) ) ( 𝐹 ‘ 𝑛 ) ) ) = ( seq 1 ( + , 𝐻 ) ‘ ( 𝑘 + 1 ) ) ) ) ) |
| 171 | 170 | expcom | ⊢ ( 𝑘 ∈ ℕ → ( 𝜑 → ( ( ∪ 𝑛 ∈ ( 1 ... 𝑘 ) ( 𝐹 ‘ 𝑛 ) ∈ dom vol ∧ ( vol* ‘ ( 𝐸 ∩ ∪ 𝑛 ∈ ( 1 ... 𝑘 ) ( 𝐹 ‘ 𝑛 ) ) ) = ( seq 1 ( + , 𝐻 ) ‘ 𝑘 ) ) → ( ∪ 𝑛 ∈ ( 1 ... ( 𝑘 + 1 ) ) ( 𝐹 ‘ 𝑛 ) ∈ dom vol ∧ ( vol* ‘ ( 𝐸 ∩ ∪ 𝑛 ∈ ( 1 ... ( 𝑘 + 1 ) ) ( 𝐹 ‘ 𝑛 ) ) ) = ( seq 1 ( + , 𝐻 ) ‘ ( 𝑘 + 1 ) ) ) ) ) ) |
| 172 | 171 | a2d | ⊢ ( 𝑘 ∈ ℕ → ( ( 𝜑 → ( ∪ 𝑛 ∈ ( 1 ... 𝑘 ) ( 𝐹 ‘ 𝑛 ) ∈ dom vol ∧ ( vol* ‘ ( 𝐸 ∩ ∪ 𝑛 ∈ ( 1 ... 𝑘 ) ( 𝐹 ‘ 𝑛 ) ) ) = ( seq 1 ( + , 𝐻 ) ‘ 𝑘 ) ) ) → ( 𝜑 → ( ∪ 𝑛 ∈ ( 1 ... ( 𝑘 + 1 ) ) ( 𝐹 ‘ 𝑛 ) ∈ dom vol ∧ ( vol* ‘ ( 𝐸 ∩ ∪ 𝑛 ∈ ( 1 ... ( 𝑘 + 1 ) ) ( 𝐹 ‘ 𝑛 ) ) ) = ( seq 1 ( + , 𝐻 ) ‘ ( 𝑘 + 1 ) ) ) ) ) ) |
| 173 | 41 50 59 50 82 172 | nnind | ⊢ ( 𝑘 ∈ ℕ → ( 𝜑 → ( ∪ 𝑛 ∈ ( 1 ... 𝑘 ) ( 𝐹 ‘ 𝑛 ) ∈ dom vol ∧ ( vol* ‘ ( 𝐸 ∩ ∪ 𝑛 ∈ ( 1 ... 𝑘 ) ( 𝐹 ‘ 𝑛 ) ) ) = ( seq 1 ( + , 𝐻 ) ‘ 𝑘 ) ) ) ) |
| 174 | 173 | impcom | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( ∪ 𝑛 ∈ ( 1 ... 𝑘 ) ( 𝐹 ‘ 𝑛 ) ∈ dom vol ∧ ( vol* ‘ ( 𝐸 ∩ ∪ 𝑛 ∈ ( 1 ... 𝑘 ) ( 𝐹 ‘ 𝑛 ) ) ) = ( seq 1 ( + , 𝐻 ) ‘ 𝑘 ) ) ) |
| 175 | 174 | simprd | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( vol* ‘ ( 𝐸 ∩ ∪ 𝑛 ∈ ( 1 ... 𝑘 ) ( 𝐹 ‘ 𝑛 ) ) ) = ( seq 1 ( + , 𝐻 ) ‘ 𝑘 ) ) |
| 176 | 175 | eqcomd | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( seq 1 ( + , 𝐻 ) ‘ 𝑘 ) = ( vol* ‘ ( 𝐸 ∩ ∪ 𝑛 ∈ ( 1 ... 𝑘 ) ( 𝐹 ‘ 𝑛 ) ) ) ) |
| 177 | 176 | oveq1d | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( ( seq 1 ( + , 𝐻 ) ‘ 𝑘 ) + ( vol* ‘ ( 𝐸 ∖ ∪ ran 𝐹 ) ) ) = ( ( vol* ‘ ( 𝐸 ∩ ∪ 𝑛 ∈ ( 1 ... 𝑘 ) ( 𝐹 ‘ 𝑛 ) ) ) + ( vol* ‘ ( 𝐸 ∖ ∪ ran 𝐹 ) ) ) ) |
| 178 | 174 | simpld | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ∪ 𝑛 ∈ ( 1 ... 𝑘 ) ( 𝐹 ‘ 𝑛 ) ∈ dom vol ) |
| 179 | mblsplit | ⊢ ( ( ∪ 𝑛 ∈ ( 1 ... 𝑘 ) ( 𝐹 ‘ 𝑛 ) ∈ dom vol ∧ 𝐸 ⊆ ℝ ∧ ( vol* ‘ 𝐸 ) ∈ ℝ ) → ( vol* ‘ 𝐸 ) = ( ( vol* ‘ ( 𝐸 ∩ ∪ 𝑛 ∈ ( 1 ... 𝑘 ) ( 𝐹 ‘ 𝑛 ) ) ) + ( vol* ‘ ( 𝐸 ∖ ∪ 𝑛 ∈ ( 1 ... 𝑘 ) ( 𝐹 ‘ 𝑛 ) ) ) ) ) | |
| 180 | 178 28 7 179 | syl3anc | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( vol* ‘ 𝐸 ) = ( ( vol* ‘ ( 𝐸 ∩ ∪ 𝑛 ∈ ( 1 ... 𝑘 ) ( 𝐹 ‘ 𝑛 ) ) ) + ( vol* ‘ ( 𝐸 ∖ ∪ 𝑛 ∈ ( 1 ... 𝑘 ) ( 𝐹 ‘ 𝑛 ) ) ) ) ) |
| 181 | 32 177 180 | 3brtr4d | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( ( seq 1 ( + , 𝐻 ) ‘ 𝑘 ) + ( vol* ‘ ( 𝐸 ∖ ∪ ran 𝐹 ) ) ) ≤ ( vol* ‘ 𝐸 ) ) |