This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A union of measurable sets is measurable. (Contributed by Mario Carneiro, 18-Mar-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | unmbl | ⊢ ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ dom vol ) → ( 𝐴 ∪ 𝐵 ) ∈ dom vol ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mblss | ⊢ ( 𝐴 ∈ dom vol → 𝐴 ⊆ ℝ ) | |
| 2 | mblss | ⊢ ( 𝐵 ∈ dom vol → 𝐵 ⊆ ℝ ) | |
| 3 | 1 2 | anim12i | ⊢ ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ dom vol ) → ( 𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ) ) |
| 4 | unss | ⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ) ↔ ( 𝐴 ∪ 𝐵 ) ⊆ ℝ ) | |
| 5 | 3 4 | sylib | ⊢ ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ dom vol ) → ( 𝐴 ∪ 𝐵 ) ⊆ ℝ ) |
| 6 | elpwi | ⊢ ( 𝑥 ∈ 𝒫 ℝ → 𝑥 ⊆ ℝ ) | |
| 7 | inss1 | ⊢ ( 𝑥 ∩ ( 𝐴 ∪ 𝐵 ) ) ⊆ 𝑥 | |
| 8 | ovolsscl | ⊢ ( ( ( 𝑥 ∩ ( 𝐴 ∪ 𝐵 ) ) ⊆ 𝑥 ∧ 𝑥 ⊆ ℝ ∧ ( vol* ‘ 𝑥 ) ∈ ℝ ) → ( vol* ‘ ( 𝑥 ∩ ( 𝐴 ∪ 𝐵 ) ) ) ∈ ℝ ) | |
| 9 | 7 8 | mp3an1 | ⊢ ( ( 𝑥 ⊆ ℝ ∧ ( vol* ‘ 𝑥 ) ∈ ℝ ) → ( vol* ‘ ( 𝑥 ∩ ( 𝐴 ∪ 𝐵 ) ) ) ∈ ℝ ) |
| 10 | 9 | adantl | ⊢ ( ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ dom vol ) ∧ ( 𝑥 ⊆ ℝ ∧ ( vol* ‘ 𝑥 ) ∈ ℝ ) ) → ( vol* ‘ ( 𝑥 ∩ ( 𝐴 ∪ 𝐵 ) ) ) ∈ ℝ ) |
| 11 | inss1 | ⊢ ( 𝑥 ∩ 𝐴 ) ⊆ 𝑥 | |
| 12 | ovolsscl | ⊢ ( ( ( 𝑥 ∩ 𝐴 ) ⊆ 𝑥 ∧ 𝑥 ⊆ ℝ ∧ ( vol* ‘ 𝑥 ) ∈ ℝ ) → ( vol* ‘ ( 𝑥 ∩ 𝐴 ) ) ∈ ℝ ) | |
| 13 | 11 12 | mp3an1 | ⊢ ( ( 𝑥 ⊆ ℝ ∧ ( vol* ‘ 𝑥 ) ∈ ℝ ) → ( vol* ‘ ( 𝑥 ∩ 𝐴 ) ) ∈ ℝ ) |
| 14 | 13 | adantl | ⊢ ( ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ dom vol ) ∧ ( 𝑥 ⊆ ℝ ∧ ( vol* ‘ 𝑥 ) ∈ ℝ ) ) → ( vol* ‘ ( 𝑥 ∩ 𝐴 ) ) ∈ ℝ ) |
| 15 | inss1 | ⊢ ( ( 𝑥 ∖ 𝐴 ) ∩ 𝐵 ) ⊆ ( 𝑥 ∖ 𝐴 ) | |
| 16 | difss | ⊢ ( 𝑥 ∖ 𝐴 ) ⊆ 𝑥 | |
| 17 | simprl | ⊢ ( ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ dom vol ) ∧ ( 𝑥 ⊆ ℝ ∧ ( vol* ‘ 𝑥 ) ∈ ℝ ) ) → 𝑥 ⊆ ℝ ) | |
| 18 | 16 17 | sstrid | ⊢ ( ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ dom vol ) ∧ ( 𝑥 ⊆ ℝ ∧ ( vol* ‘ 𝑥 ) ∈ ℝ ) ) → ( 𝑥 ∖ 𝐴 ) ⊆ ℝ ) |
| 19 | ovolsscl | ⊢ ( ( ( 𝑥 ∖ 𝐴 ) ⊆ 𝑥 ∧ 𝑥 ⊆ ℝ ∧ ( vol* ‘ 𝑥 ) ∈ ℝ ) → ( vol* ‘ ( 𝑥 ∖ 𝐴 ) ) ∈ ℝ ) | |
| 20 | 16 19 | mp3an1 | ⊢ ( ( 𝑥 ⊆ ℝ ∧ ( vol* ‘ 𝑥 ) ∈ ℝ ) → ( vol* ‘ ( 𝑥 ∖ 𝐴 ) ) ∈ ℝ ) |
| 21 | 20 | adantl | ⊢ ( ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ dom vol ) ∧ ( 𝑥 ⊆ ℝ ∧ ( vol* ‘ 𝑥 ) ∈ ℝ ) ) → ( vol* ‘ ( 𝑥 ∖ 𝐴 ) ) ∈ ℝ ) |
| 22 | ovolsscl | ⊢ ( ( ( ( 𝑥 ∖ 𝐴 ) ∩ 𝐵 ) ⊆ ( 𝑥 ∖ 𝐴 ) ∧ ( 𝑥 ∖ 𝐴 ) ⊆ ℝ ∧ ( vol* ‘ ( 𝑥 ∖ 𝐴 ) ) ∈ ℝ ) → ( vol* ‘ ( ( 𝑥 ∖ 𝐴 ) ∩ 𝐵 ) ) ∈ ℝ ) | |
| 23 | 15 18 21 22 | mp3an2i | ⊢ ( ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ dom vol ) ∧ ( 𝑥 ⊆ ℝ ∧ ( vol* ‘ 𝑥 ) ∈ ℝ ) ) → ( vol* ‘ ( ( 𝑥 ∖ 𝐴 ) ∩ 𝐵 ) ) ∈ ℝ ) |
| 24 | 14 23 | readdcld | ⊢ ( ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ dom vol ) ∧ ( 𝑥 ⊆ ℝ ∧ ( vol* ‘ 𝑥 ) ∈ ℝ ) ) → ( ( vol* ‘ ( 𝑥 ∩ 𝐴 ) ) + ( vol* ‘ ( ( 𝑥 ∖ 𝐴 ) ∩ 𝐵 ) ) ) ∈ ℝ ) |
| 25 | difss | ⊢ ( 𝑥 ∖ ( 𝐴 ∪ 𝐵 ) ) ⊆ 𝑥 | |
| 26 | ovolsscl | ⊢ ( ( ( 𝑥 ∖ ( 𝐴 ∪ 𝐵 ) ) ⊆ 𝑥 ∧ 𝑥 ⊆ ℝ ∧ ( vol* ‘ 𝑥 ) ∈ ℝ ) → ( vol* ‘ ( 𝑥 ∖ ( 𝐴 ∪ 𝐵 ) ) ) ∈ ℝ ) | |
| 27 | 25 26 | mp3an1 | ⊢ ( ( 𝑥 ⊆ ℝ ∧ ( vol* ‘ 𝑥 ) ∈ ℝ ) → ( vol* ‘ ( 𝑥 ∖ ( 𝐴 ∪ 𝐵 ) ) ) ∈ ℝ ) |
| 28 | 27 | adantl | ⊢ ( ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ dom vol ) ∧ ( 𝑥 ⊆ ℝ ∧ ( vol* ‘ 𝑥 ) ∈ ℝ ) ) → ( vol* ‘ ( 𝑥 ∖ ( 𝐴 ∪ 𝐵 ) ) ) ∈ ℝ ) |
| 29 | incom | ⊢ ( ( 𝑥 ∖ 𝐴 ) ∩ 𝐵 ) = ( 𝐵 ∩ ( 𝑥 ∖ 𝐴 ) ) | |
| 30 | indifcom | ⊢ ( 𝐵 ∩ ( 𝑥 ∖ 𝐴 ) ) = ( 𝑥 ∩ ( 𝐵 ∖ 𝐴 ) ) | |
| 31 | 29 30 | eqtri | ⊢ ( ( 𝑥 ∖ 𝐴 ) ∩ 𝐵 ) = ( 𝑥 ∩ ( 𝐵 ∖ 𝐴 ) ) |
| 32 | 31 | uneq2i | ⊢ ( ( 𝑥 ∩ 𝐴 ) ∪ ( ( 𝑥 ∖ 𝐴 ) ∩ 𝐵 ) ) = ( ( 𝑥 ∩ 𝐴 ) ∪ ( 𝑥 ∩ ( 𝐵 ∖ 𝐴 ) ) ) |
| 33 | indi | ⊢ ( 𝑥 ∩ ( 𝐴 ∪ ( 𝐵 ∖ 𝐴 ) ) ) = ( ( 𝑥 ∩ 𝐴 ) ∪ ( 𝑥 ∩ ( 𝐵 ∖ 𝐴 ) ) ) | |
| 34 | undif2 | ⊢ ( 𝐴 ∪ ( 𝐵 ∖ 𝐴 ) ) = ( 𝐴 ∪ 𝐵 ) | |
| 35 | 34 | ineq2i | ⊢ ( 𝑥 ∩ ( 𝐴 ∪ ( 𝐵 ∖ 𝐴 ) ) ) = ( 𝑥 ∩ ( 𝐴 ∪ 𝐵 ) ) |
| 36 | 32 33 35 | 3eqtr2ri | ⊢ ( 𝑥 ∩ ( 𝐴 ∪ 𝐵 ) ) = ( ( 𝑥 ∩ 𝐴 ) ∪ ( ( 𝑥 ∖ 𝐴 ) ∩ 𝐵 ) ) |
| 37 | 36 | fveq2i | ⊢ ( vol* ‘ ( 𝑥 ∩ ( 𝐴 ∪ 𝐵 ) ) ) = ( vol* ‘ ( ( 𝑥 ∩ 𝐴 ) ∪ ( ( 𝑥 ∖ 𝐴 ) ∩ 𝐵 ) ) ) |
| 38 | 11 17 | sstrid | ⊢ ( ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ dom vol ) ∧ ( 𝑥 ⊆ ℝ ∧ ( vol* ‘ 𝑥 ) ∈ ℝ ) ) → ( 𝑥 ∩ 𝐴 ) ⊆ ℝ ) |
| 39 | 15 18 | sstrid | ⊢ ( ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ dom vol ) ∧ ( 𝑥 ⊆ ℝ ∧ ( vol* ‘ 𝑥 ) ∈ ℝ ) ) → ( ( 𝑥 ∖ 𝐴 ) ∩ 𝐵 ) ⊆ ℝ ) |
| 40 | ovolun | ⊢ ( ( ( ( 𝑥 ∩ 𝐴 ) ⊆ ℝ ∧ ( vol* ‘ ( 𝑥 ∩ 𝐴 ) ) ∈ ℝ ) ∧ ( ( ( 𝑥 ∖ 𝐴 ) ∩ 𝐵 ) ⊆ ℝ ∧ ( vol* ‘ ( ( 𝑥 ∖ 𝐴 ) ∩ 𝐵 ) ) ∈ ℝ ) ) → ( vol* ‘ ( ( 𝑥 ∩ 𝐴 ) ∪ ( ( 𝑥 ∖ 𝐴 ) ∩ 𝐵 ) ) ) ≤ ( ( vol* ‘ ( 𝑥 ∩ 𝐴 ) ) + ( vol* ‘ ( ( 𝑥 ∖ 𝐴 ) ∩ 𝐵 ) ) ) ) | |
| 41 | 38 14 39 23 40 | syl22anc | ⊢ ( ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ dom vol ) ∧ ( 𝑥 ⊆ ℝ ∧ ( vol* ‘ 𝑥 ) ∈ ℝ ) ) → ( vol* ‘ ( ( 𝑥 ∩ 𝐴 ) ∪ ( ( 𝑥 ∖ 𝐴 ) ∩ 𝐵 ) ) ) ≤ ( ( vol* ‘ ( 𝑥 ∩ 𝐴 ) ) + ( vol* ‘ ( ( 𝑥 ∖ 𝐴 ) ∩ 𝐵 ) ) ) ) |
| 42 | 37 41 | eqbrtrid | ⊢ ( ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ dom vol ) ∧ ( 𝑥 ⊆ ℝ ∧ ( vol* ‘ 𝑥 ) ∈ ℝ ) ) → ( vol* ‘ ( 𝑥 ∩ ( 𝐴 ∪ 𝐵 ) ) ) ≤ ( ( vol* ‘ ( 𝑥 ∩ 𝐴 ) ) + ( vol* ‘ ( ( 𝑥 ∖ 𝐴 ) ∩ 𝐵 ) ) ) ) |
| 43 | 10 24 28 42 | leadd1dd | ⊢ ( ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ dom vol ) ∧ ( 𝑥 ⊆ ℝ ∧ ( vol* ‘ 𝑥 ) ∈ ℝ ) ) → ( ( vol* ‘ ( 𝑥 ∩ ( 𝐴 ∪ 𝐵 ) ) ) + ( vol* ‘ ( 𝑥 ∖ ( 𝐴 ∪ 𝐵 ) ) ) ) ≤ ( ( ( vol* ‘ ( 𝑥 ∩ 𝐴 ) ) + ( vol* ‘ ( ( 𝑥 ∖ 𝐴 ) ∩ 𝐵 ) ) ) + ( vol* ‘ ( 𝑥 ∖ ( 𝐴 ∪ 𝐵 ) ) ) ) ) |
| 44 | simplr | ⊢ ( ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ dom vol ) ∧ ( 𝑥 ⊆ ℝ ∧ ( vol* ‘ 𝑥 ) ∈ ℝ ) ) → 𝐵 ∈ dom vol ) | |
| 45 | mblsplit | ⊢ ( ( 𝐵 ∈ dom vol ∧ ( 𝑥 ∖ 𝐴 ) ⊆ ℝ ∧ ( vol* ‘ ( 𝑥 ∖ 𝐴 ) ) ∈ ℝ ) → ( vol* ‘ ( 𝑥 ∖ 𝐴 ) ) = ( ( vol* ‘ ( ( 𝑥 ∖ 𝐴 ) ∩ 𝐵 ) ) + ( vol* ‘ ( ( 𝑥 ∖ 𝐴 ) ∖ 𝐵 ) ) ) ) | |
| 46 | 44 18 21 45 | syl3anc | ⊢ ( ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ dom vol ) ∧ ( 𝑥 ⊆ ℝ ∧ ( vol* ‘ 𝑥 ) ∈ ℝ ) ) → ( vol* ‘ ( 𝑥 ∖ 𝐴 ) ) = ( ( vol* ‘ ( ( 𝑥 ∖ 𝐴 ) ∩ 𝐵 ) ) + ( vol* ‘ ( ( 𝑥 ∖ 𝐴 ) ∖ 𝐵 ) ) ) ) |
| 47 | difun1 | ⊢ ( 𝑥 ∖ ( 𝐴 ∪ 𝐵 ) ) = ( ( 𝑥 ∖ 𝐴 ) ∖ 𝐵 ) | |
| 48 | 47 | fveq2i | ⊢ ( vol* ‘ ( 𝑥 ∖ ( 𝐴 ∪ 𝐵 ) ) ) = ( vol* ‘ ( ( 𝑥 ∖ 𝐴 ) ∖ 𝐵 ) ) |
| 49 | 48 | oveq2i | ⊢ ( ( vol* ‘ ( ( 𝑥 ∖ 𝐴 ) ∩ 𝐵 ) ) + ( vol* ‘ ( 𝑥 ∖ ( 𝐴 ∪ 𝐵 ) ) ) ) = ( ( vol* ‘ ( ( 𝑥 ∖ 𝐴 ) ∩ 𝐵 ) ) + ( vol* ‘ ( ( 𝑥 ∖ 𝐴 ) ∖ 𝐵 ) ) ) |
| 50 | 46 49 | eqtr4di | ⊢ ( ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ dom vol ) ∧ ( 𝑥 ⊆ ℝ ∧ ( vol* ‘ 𝑥 ) ∈ ℝ ) ) → ( vol* ‘ ( 𝑥 ∖ 𝐴 ) ) = ( ( vol* ‘ ( ( 𝑥 ∖ 𝐴 ) ∩ 𝐵 ) ) + ( vol* ‘ ( 𝑥 ∖ ( 𝐴 ∪ 𝐵 ) ) ) ) ) |
| 51 | 50 | oveq2d | ⊢ ( ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ dom vol ) ∧ ( 𝑥 ⊆ ℝ ∧ ( vol* ‘ 𝑥 ) ∈ ℝ ) ) → ( ( vol* ‘ ( 𝑥 ∩ 𝐴 ) ) + ( vol* ‘ ( 𝑥 ∖ 𝐴 ) ) ) = ( ( vol* ‘ ( 𝑥 ∩ 𝐴 ) ) + ( ( vol* ‘ ( ( 𝑥 ∖ 𝐴 ) ∩ 𝐵 ) ) + ( vol* ‘ ( 𝑥 ∖ ( 𝐴 ∪ 𝐵 ) ) ) ) ) ) |
| 52 | simpll | ⊢ ( ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ dom vol ) ∧ ( 𝑥 ⊆ ℝ ∧ ( vol* ‘ 𝑥 ) ∈ ℝ ) ) → 𝐴 ∈ dom vol ) | |
| 53 | simprr | ⊢ ( ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ dom vol ) ∧ ( 𝑥 ⊆ ℝ ∧ ( vol* ‘ 𝑥 ) ∈ ℝ ) ) → ( vol* ‘ 𝑥 ) ∈ ℝ ) | |
| 54 | mblsplit | ⊢ ( ( 𝐴 ∈ dom vol ∧ 𝑥 ⊆ ℝ ∧ ( vol* ‘ 𝑥 ) ∈ ℝ ) → ( vol* ‘ 𝑥 ) = ( ( vol* ‘ ( 𝑥 ∩ 𝐴 ) ) + ( vol* ‘ ( 𝑥 ∖ 𝐴 ) ) ) ) | |
| 55 | 52 17 53 54 | syl3anc | ⊢ ( ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ dom vol ) ∧ ( 𝑥 ⊆ ℝ ∧ ( vol* ‘ 𝑥 ) ∈ ℝ ) ) → ( vol* ‘ 𝑥 ) = ( ( vol* ‘ ( 𝑥 ∩ 𝐴 ) ) + ( vol* ‘ ( 𝑥 ∖ 𝐴 ) ) ) ) |
| 56 | 14 | recnd | ⊢ ( ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ dom vol ) ∧ ( 𝑥 ⊆ ℝ ∧ ( vol* ‘ 𝑥 ) ∈ ℝ ) ) → ( vol* ‘ ( 𝑥 ∩ 𝐴 ) ) ∈ ℂ ) |
| 57 | 23 | recnd | ⊢ ( ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ dom vol ) ∧ ( 𝑥 ⊆ ℝ ∧ ( vol* ‘ 𝑥 ) ∈ ℝ ) ) → ( vol* ‘ ( ( 𝑥 ∖ 𝐴 ) ∩ 𝐵 ) ) ∈ ℂ ) |
| 58 | 28 | recnd | ⊢ ( ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ dom vol ) ∧ ( 𝑥 ⊆ ℝ ∧ ( vol* ‘ 𝑥 ) ∈ ℝ ) ) → ( vol* ‘ ( 𝑥 ∖ ( 𝐴 ∪ 𝐵 ) ) ) ∈ ℂ ) |
| 59 | 56 57 58 | addassd | ⊢ ( ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ dom vol ) ∧ ( 𝑥 ⊆ ℝ ∧ ( vol* ‘ 𝑥 ) ∈ ℝ ) ) → ( ( ( vol* ‘ ( 𝑥 ∩ 𝐴 ) ) + ( vol* ‘ ( ( 𝑥 ∖ 𝐴 ) ∩ 𝐵 ) ) ) + ( vol* ‘ ( 𝑥 ∖ ( 𝐴 ∪ 𝐵 ) ) ) ) = ( ( vol* ‘ ( 𝑥 ∩ 𝐴 ) ) + ( ( vol* ‘ ( ( 𝑥 ∖ 𝐴 ) ∩ 𝐵 ) ) + ( vol* ‘ ( 𝑥 ∖ ( 𝐴 ∪ 𝐵 ) ) ) ) ) ) |
| 60 | 51 55 59 | 3eqtr4d | ⊢ ( ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ dom vol ) ∧ ( 𝑥 ⊆ ℝ ∧ ( vol* ‘ 𝑥 ) ∈ ℝ ) ) → ( vol* ‘ 𝑥 ) = ( ( ( vol* ‘ ( 𝑥 ∩ 𝐴 ) ) + ( vol* ‘ ( ( 𝑥 ∖ 𝐴 ) ∩ 𝐵 ) ) ) + ( vol* ‘ ( 𝑥 ∖ ( 𝐴 ∪ 𝐵 ) ) ) ) ) |
| 61 | 43 60 | breqtrrd | ⊢ ( ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ dom vol ) ∧ ( 𝑥 ⊆ ℝ ∧ ( vol* ‘ 𝑥 ) ∈ ℝ ) ) → ( ( vol* ‘ ( 𝑥 ∩ ( 𝐴 ∪ 𝐵 ) ) ) + ( vol* ‘ ( 𝑥 ∖ ( 𝐴 ∪ 𝐵 ) ) ) ) ≤ ( vol* ‘ 𝑥 ) ) |
| 62 | 61 | expr | ⊢ ( ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ dom vol ) ∧ 𝑥 ⊆ ℝ ) → ( ( vol* ‘ 𝑥 ) ∈ ℝ → ( ( vol* ‘ ( 𝑥 ∩ ( 𝐴 ∪ 𝐵 ) ) ) + ( vol* ‘ ( 𝑥 ∖ ( 𝐴 ∪ 𝐵 ) ) ) ) ≤ ( vol* ‘ 𝑥 ) ) ) |
| 63 | 6 62 | sylan2 | ⊢ ( ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ dom vol ) ∧ 𝑥 ∈ 𝒫 ℝ ) → ( ( vol* ‘ 𝑥 ) ∈ ℝ → ( ( vol* ‘ ( 𝑥 ∩ ( 𝐴 ∪ 𝐵 ) ) ) + ( vol* ‘ ( 𝑥 ∖ ( 𝐴 ∪ 𝐵 ) ) ) ) ≤ ( vol* ‘ 𝑥 ) ) ) |
| 64 | 63 | ralrimiva | ⊢ ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ dom vol ) → ∀ 𝑥 ∈ 𝒫 ℝ ( ( vol* ‘ 𝑥 ) ∈ ℝ → ( ( vol* ‘ ( 𝑥 ∩ ( 𝐴 ∪ 𝐵 ) ) ) + ( vol* ‘ ( 𝑥 ∖ ( 𝐴 ∪ 𝐵 ) ) ) ) ≤ ( vol* ‘ 𝑥 ) ) ) |
| 65 | ismbl2 | ⊢ ( ( 𝐴 ∪ 𝐵 ) ∈ dom vol ↔ ( ( 𝐴 ∪ 𝐵 ) ⊆ ℝ ∧ ∀ 𝑥 ∈ 𝒫 ℝ ( ( vol* ‘ 𝑥 ) ∈ ℝ → ( ( vol* ‘ ( 𝑥 ∩ ( 𝐴 ∪ 𝐵 ) ) ) + ( vol* ‘ ( 𝑥 ∖ ( 𝐴 ∪ 𝐵 ) ) ) ) ≤ ( vol* ‘ 𝑥 ) ) ) ) | |
| 66 | 5 64 65 | sylanbrc | ⊢ ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ dom vol ) → ( 𝐴 ∪ 𝐵 ) ∈ dom vol ) |