This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for voliun . (Contributed by Mario Carneiro, 20-Mar-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | voliunlem.3 | ⊢ ( 𝜑 → 𝐹 : ℕ ⟶ dom vol ) | |
| voliunlem.5 | ⊢ ( 𝜑 → Disj 𝑖 ∈ ℕ ( 𝐹 ‘ 𝑖 ) ) | ||
| voliunlem.6 | ⊢ 𝐻 = ( 𝑛 ∈ ℕ ↦ ( vol* ‘ ( 𝑥 ∩ ( 𝐹 ‘ 𝑛 ) ) ) ) | ||
| Assertion | voliunlem2 | ⊢ ( 𝜑 → ∪ ran 𝐹 ∈ dom vol ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | voliunlem.3 | ⊢ ( 𝜑 → 𝐹 : ℕ ⟶ dom vol ) | |
| 2 | voliunlem.5 | ⊢ ( 𝜑 → Disj 𝑖 ∈ ℕ ( 𝐹 ‘ 𝑖 ) ) | |
| 3 | voliunlem.6 | ⊢ 𝐻 = ( 𝑛 ∈ ℕ ↦ ( vol* ‘ ( 𝑥 ∩ ( 𝐹 ‘ 𝑛 ) ) ) ) | |
| 4 | 1 | frnd | ⊢ ( 𝜑 → ran 𝐹 ⊆ dom vol ) |
| 5 | mblss | ⊢ ( 𝑥 ∈ dom vol → 𝑥 ⊆ ℝ ) | |
| 6 | velpw | ⊢ ( 𝑥 ∈ 𝒫 ℝ ↔ 𝑥 ⊆ ℝ ) | |
| 7 | 5 6 | sylibr | ⊢ ( 𝑥 ∈ dom vol → 𝑥 ∈ 𝒫 ℝ ) |
| 8 | 7 | ssriv | ⊢ dom vol ⊆ 𝒫 ℝ |
| 9 | 4 8 | sstrdi | ⊢ ( 𝜑 → ran 𝐹 ⊆ 𝒫 ℝ ) |
| 10 | sspwuni | ⊢ ( ran 𝐹 ⊆ 𝒫 ℝ ↔ ∪ ran 𝐹 ⊆ ℝ ) | |
| 11 | 9 10 | sylib | ⊢ ( 𝜑 → ∪ ran 𝐹 ⊆ ℝ ) |
| 12 | elpwi | ⊢ ( 𝑥 ∈ 𝒫 ℝ → 𝑥 ⊆ ℝ ) | |
| 13 | inundif | ⊢ ( ( 𝑥 ∩ ∪ ran 𝐹 ) ∪ ( 𝑥 ∖ ∪ ran 𝐹 ) ) = 𝑥 | |
| 14 | 13 | fveq2i | ⊢ ( vol* ‘ ( ( 𝑥 ∩ ∪ ran 𝐹 ) ∪ ( 𝑥 ∖ ∪ ran 𝐹 ) ) ) = ( vol* ‘ 𝑥 ) |
| 15 | inss1 | ⊢ ( 𝑥 ∩ ∪ ran 𝐹 ) ⊆ 𝑥 | |
| 16 | simp2 | ⊢ ( ( 𝜑 ∧ 𝑥 ⊆ ℝ ∧ ( vol* ‘ 𝑥 ) ∈ ℝ ) → 𝑥 ⊆ ℝ ) | |
| 17 | 15 16 | sstrid | ⊢ ( ( 𝜑 ∧ 𝑥 ⊆ ℝ ∧ ( vol* ‘ 𝑥 ) ∈ ℝ ) → ( 𝑥 ∩ ∪ ran 𝐹 ) ⊆ ℝ ) |
| 18 | ovolsscl | ⊢ ( ( ( 𝑥 ∩ ∪ ran 𝐹 ) ⊆ 𝑥 ∧ 𝑥 ⊆ ℝ ∧ ( vol* ‘ 𝑥 ) ∈ ℝ ) → ( vol* ‘ ( 𝑥 ∩ ∪ ran 𝐹 ) ) ∈ ℝ ) | |
| 19 | 15 18 | mp3an1 | ⊢ ( ( 𝑥 ⊆ ℝ ∧ ( vol* ‘ 𝑥 ) ∈ ℝ ) → ( vol* ‘ ( 𝑥 ∩ ∪ ran 𝐹 ) ) ∈ ℝ ) |
| 20 | 19 | 3adant1 | ⊢ ( ( 𝜑 ∧ 𝑥 ⊆ ℝ ∧ ( vol* ‘ 𝑥 ) ∈ ℝ ) → ( vol* ‘ ( 𝑥 ∩ ∪ ran 𝐹 ) ) ∈ ℝ ) |
| 21 | difss | ⊢ ( 𝑥 ∖ ∪ ran 𝐹 ) ⊆ 𝑥 | |
| 22 | 21 16 | sstrid | ⊢ ( ( 𝜑 ∧ 𝑥 ⊆ ℝ ∧ ( vol* ‘ 𝑥 ) ∈ ℝ ) → ( 𝑥 ∖ ∪ ran 𝐹 ) ⊆ ℝ ) |
| 23 | ovolsscl | ⊢ ( ( ( 𝑥 ∖ ∪ ran 𝐹 ) ⊆ 𝑥 ∧ 𝑥 ⊆ ℝ ∧ ( vol* ‘ 𝑥 ) ∈ ℝ ) → ( vol* ‘ ( 𝑥 ∖ ∪ ran 𝐹 ) ) ∈ ℝ ) | |
| 24 | 21 23 | mp3an1 | ⊢ ( ( 𝑥 ⊆ ℝ ∧ ( vol* ‘ 𝑥 ) ∈ ℝ ) → ( vol* ‘ ( 𝑥 ∖ ∪ ran 𝐹 ) ) ∈ ℝ ) |
| 25 | 24 | 3adant1 | ⊢ ( ( 𝜑 ∧ 𝑥 ⊆ ℝ ∧ ( vol* ‘ 𝑥 ) ∈ ℝ ) → ( vol* ‘ ( 𝑥 ∖ ∪ ran 𝐹 ) ) ∈ ℝ ) |
| 26 | ovolun | ⊢ ( ( ( ( 𝑥 ∩ ∪ ran 𝐹 ) ⊆ ℝ ∧ ( vol* ‘ ( 𝑥 ∩ ∪ ran 𝐹 ) ) ∈ ℝ ) ∧ ( ( 𝑥 ∖ ∪ ran 𝐹 ) ⊆ ℝ ∧ ( vol* ‘ ( 𝑥 ∖ ∪ ran 𝐹 ) ) ∈ ℝ ) ) → ( vol* ‘ ( ( 𝑥 ∩ ∪ ran 𝐹 ) ∪ ( 𝑥 ∖ ∪ ran 𝐹 ) ) ) ≤ ( ( vol* ‘ ( 𝑥 ∩ ∪ ran 𝐹 ) ) + ( vol* ‘ ( 𝑥 ∖ ∪ ran 𝐹 ) ) ) ) | |
| 27 | 17 20 22 25 26 | syl22anc | ⊢ ( ( 𝜑 ∧ 𝑥 ⊆ ℝ ∧ ( vol* ‘ 𝑥 ) ∈ ℝ ) → ( vol* ‘ ( ( 𝑥 ∩ ∪ ran 𝐹 ) ∪ ( 𝑥 ∖ ∪ ran 𝐹 ) ) ) ≤ ( ( vol* ‘ ( 𝑥 ∩ ∪ ran 𝐹 ) ) + ( vol* ‘ ( 𝑥 ∖ ∪ ran 𝐹 ) ) ) ) |
| 28 | 14 27 | eqbrtrrid | ⊢ ( ( 𝜑 ∧ 𝑥 ⊆ ℝ ∧ ( vol* ‘ 𝑥 ) ∈ ℝ ) → ( vol* ‘ 𝑥 ) ≤ ( ( vol* ‘ ( 𝑥 ∩ ∪ ran 𝐹 ) ) + ( vol* ‘ ( 𝑥 ∖ ∪ ran 𝐹 ) ) ) ) |
| 29 | 20 | rexrd | ⊢ ( ( 𝜑 ∧ 𝑥 ⊆ ℝ ∧ ( vol* ‘ 𝑥 ) ∈ ℝ ) → ( vol* ‘ ( 𝑥 ∩ ∪ ran 𝐹 ) ) ∈ ℝ* ) |
| 30 | nnuz | ⊢ ℕ = ( ℤ≥ ‘ 1 ) | |
| 31 | 1zzd | ⊢ ( ( 𝜑 ∧ 𝑥 ⊆ ℝ ∧ ( vol* ‘ 𝑥 ) ∈ ℝ ) → 1 ∈ ℤ ) | |
| 32 | fveq2 | ⊢ ( 𝑛 = 𝑘 → ( 𝐹 ‘ 𝑛 ) = ( 𝐹 ‘ 𝑘 ) ) | |
| 33 | 32 | ineq2d | ⊢ ( 𝑛 = 𝑘 → ( 𝑥 ∩ ( 𝐹 ‘ 𝑛 ) ) = ( 𝑥 ∩ ( 𝐹 ‘ 𝑘 ) ) ) |
| 34 | 33 | fveq2d | ⊢ ( 𝑛 = 𝑘 → ( vol* ‘ ( 𝑥 ∩ ( 𝐹 ‘ 𝑛 ) ) ) = ( vol* ‘ ( 𝑥 ∩ ( 𝐹 ‘ 𝑘 ) ) ) ) |
| 35 | fvex | ⊢ ( vol* ‘ ( 𝑥 ∩ ( 𝐹 ‘ 𝑘 ) ) ) ∈ V | |
| 36 | 34 3 35 | fvmpt | ⊢ ( 𝑘 ∈ ℕ → ( 𝐻 ‘ 𝑘 ) = ( vol* ‘ ( 𝑥 ∩ ( 𝐹 ‘ 𝑘 ) ) ) ) |
| 37 | 36 | adantl | ⊢ ( ( ( 𝜑 ∧ 𝑥 ⊆ ℝ ∧ ( vol* ‘ 𝑥 ) ∈ ℝ ) ∧ 𝑘 ∈ ℕ ) → ( 𝐻 ‘ 𝑘 ) = ( vol* ‘ ( 𝑥 ∩ ( 𝐹 ‘ 𝑘 ) ) ) ) |
| 38 | inss1 | ⊢ ( 𝑥 ∩ ( 𝐹 ‘ 𝑘 ) ) ⊆ 𝑥 | |
| 39 | ovolsscl | ⊢ ( ( ( 𝑥 ∩ ( 𝐹 ‘ 𝑘 ) ) ⊆ 𝑥 ∧ 𝑥 ⊆ ℝ ∧ ( vol* ‘ 𝑥 ) ∈ ℝ ) → ( vol* ‘ ( 𝑥 ∩ ( 𝐹 ‘ 𝑘 ) ) ) ∈ ℝ ) | |
| 40 | 38 39 | mp3an1 | ⊢ ( ( 𝑥 ⊆ ℝ ∧ ( vol* ‘ 𝑥 ) ∈ ℝ ) → ( vol* ‘ ( 𝑥 ∩ ( 𝐹 ‘ 𝑘 ) ) ) ∈ ℝ ) |
| 41 | 40 | 3adant1 | ⊢ ( ( 𝜑 ∧ 𝑥 ⊆ ℝ ∧ ( vol* ‘ 𝑥 ) ∈ ℝ ) → ( vol* ‘ ( 𝑥 ∩ ( 𝐹 ‘ 𝑘 ) ) ) ∈ ℝ ) |
| 42 | 41 | adantr | ⊢ ( ( ( 𝜑 ∧ 𝑥 ⊆ ℝ ∧ ( vol* ‘ 𝑥 ) ∈ ℝ ) ∧ 𝑘 ∈ ℕ ) → ( vol* ‘ ( 𝑥 ∩ ( 𝐹 ‘ 𝑘 ) ) ) ∈ ℝ ) |
| 43 | 37 42 | eqeltrd | ⊢ ( ( ( 𝜑 ∧ 𝑥 ⊆ ℝ ∧ ( vol* ‘ 𝑥 ) ∈ ℝ ) ∧ 𝑘 ∈ ℕ ) → ( 𝐻 ‘ 𝑘 ) ∈ ℝ ) |
| 44 | 30 31 43 | serfre | ⊢ ( ( 𝜑 ∧ 𝑥 ⊆ ℝ ∧ ( vol* ‘ 𝑥 ) ∈ ℝ ) → seq 1 ( + , 𝐻 ) : ℕ ⟶ ℝ ) |
| 45 | 44 | frnd | ⊢ ( ( 𝜑 ∧ 𝑥 ⊆ ℝ ∧ ( vol* ‘ 𝑥 ) ∈ ℝ ) → ran seq 1 ( + , 𝐻 ) ⊆ ℝ ) |
| 46 | ressxr | ⊢ ℝ ⊆ ℝ* | |
| 47 | 45 46 | sstrdi | ⊢ ( ( 𝜑 ∧ 𝑥 ⊆ ℝ ∧ ( vol* ‘ 𝑥 ) ∈ ℝ ) → ran seq 1 ( + , 𝐻 ) ⊆ ℝ* ) |
| 48 | supxrcl | ⊢ ( ran seq 1 ( + , 𝐻 ) ⊆ ℝ* → sup ( ran seq 1 ( + , 𝐻 ) , ℝ* , < ) ∈ ℝ* ) | |
| 49 | 47 48 | syl | ⊢ ( ( 𝜑 ∧ 𝑥 ⊆ ℝ ∧ ( vol* ‘ 𝑥 ) ∈ ℝ ) → sup ( ran seq 1 ( + , 𝐻 ) , ℝ* , < ) ∈ ℝ* ) |
| 50 | simp3 | ⊢ ( ( 𝜑 ∧ 𝑥 ⊆ ℝ ∧ ( vol* ‘ 𝑥 ) ∈ ℝ ) → ( vol* ‘ 𝑥 ) ∈ ℝ ) | |
| 51 | 50 25 | resubcld | ⊢ ( ( 𝜑 ∧ 𝑥 ⊆ ℝ ∧ ( vol* ‘ 𝑥 ) ∈ ℝ ) → ( ( vol* ‘ 𝑥 ) − ( vol* ‘ ( 𝑥 ∖ ∪ ran 𝐹 ) ) ) ∈ ℝ ) |
| 52 | 51 | rexrd | ⊢ ( ( 𝜑 ∧ 𝑥 ⊆ ℝ ∧ ( vol* ‘ 𝑥 ) ∈ ℝ ) → ( ( vol* ‘ 𝑥 ) − ( vol* ‘ ( 𝑥 ∖ ∪ ran 𝐹 ) ) ) ∈ ℝ* ) |
| 53 | iunin2 | ⊢ ∪ 𝑛 ∈ ℕ ( 𝑥 ∩ ( 𝐹 ‘ 𝑛 ) ) = ( 𝑥 ∩ ∪ 𝑛 ∈ ℕ ( 𝐹 ‘ 𝑛 ) ) | |
| 54 | ffn | ⊢ ( 𝐹 : ℕ ⟶ dom vol → 𝐹 Fn ℕ ) | |
| 55 | fniunfv | ⊢ ( 𝐹 Fn ℕ → ∪ 𝑛 ∈ ℕ ( 𝐹 ‘ 𝑛 ) = ∪ ran 𝐹 ) | |
| 56 | 1 54 55 | 3syl | ⊢ ( 𝜑 → ∪ 𝑛 ∈ ℕ ( 𝐹 ‘ 𝑛 ) = ∪ ran 𝐹 ) |
| 57 | 56 | 3ad2ant1 | ⊢ ( ( 𝜑 ∧ 𝑥 ⊆ ℝ ∧ ( vol* ‘ 𝑥 ) ∈ ℝ ) → ∪ 𝑛 ∈ ℕ ( 𝐹 ‘ 𝑛 ) = ∪ ran 𝐹 ) |
| 58 | 57 | ineq2d | ⊢ ( ( 𝜑 ∧ 𝑥 ⊆ ℝ ∧ ( vol* ‘ 𝑥 ) ∈ ℝ ) → ( 𝑥 ∩ ∪ 𝑛 ∈ ℕ ( 𝐹 ‘ 𝑛 ) ) = ( 𝑥 ∩ ∪ ran 𝐹 ) ) |
| 59 | 53 58 | eqtrid | ⊢ ( ( 𝜑 ∧ 𝑥 ⊆ ℝ ∧ ( vol* ‘ 𝑥 ) ∈ ℝ ) → ∪ 𝑛 ∈ ℕ ( 𝑥 ∩ ( 𝐹 ‘ 𝑛 ) ) = ( 𝑥 ∩ ∪ ran 𝐹 ) ) |
| 60 | 59 | fveq2d | ⊢ ( ( 𝜑 ∧ 𝑥 ⊆ ℝ ∧ ( vol* ‘ 𝑥 ) ∈ ℝ ) → ( vol* ‘ ∪ 𝑛 ∈ ℕ ( 𝑥 ∩ ( 𝐹 ‘ 𝑛 ) ) ) = ( vol* ‘ ( 𝑥 ∩ ∪ ran 𝐹 ) ) ) |
| 61 | eqid | ⊢ seq 1 ( + , 𝐻 ) = seq 1 ( + , 𝐻 ) | |
| 62 | inss1 | ⊢ ( 𝑥 ∩ ( 𝐹 ‘ 𝑛 ) ) ⊆ 𝑥 | |
| 63 | 62 16 | sstrid | ⊢ ( ( 𝜑 ∧ 𝑥 ⊆ ℝ ∧ ( vol* ‘ 𝑥 ) ∈ ℝ ) → ( 𝑥 ∩ ( 𝐹 ‘ 𝑛 ) ) ⊆ ℝ ) |
| 64 | 63 | adantr | ⊢ ( ( ( 𝜑 ∧ 𝑥 ⊆ ℝ ∧ ( vol* ‘ 𝑥 ) ∈ ℝ ) ∧ 𝑛 ∈ ℕ ) → ( 𝑥 ∩ ( 𝐹 ‘ 𝑛 ) ) ⊆ ℝ ) |
| 65 | ovolsscl | ⊢ ( ( ( 𝑥 ∩ ( 𝐹 ‘ 𝑛 ) ) ⊆ 𝑥 ∧ 𝑥 ⊆ ℝ ∧ ( vol* ‘ 𝑥 ) ∈ ℝ ) → ( vol* ‘ ( 𝑥 ∩ ( 𝐹 ‘ 𝑛 ) ) ) ∈ ℝ ) | |
| 66 | 62 65 | mp3an1 | ⊢ ( ( 𝑥 ⊆ ℝ ∧ ( vol* ‘ 𝑥 ) ∈ ℝ ) → ( vol* ‘ ( 𝑥 ∩ ( 𝐹 ‘ 𝑛 ) ) ) ∈ ℝ ) |
| 67 | 66 | 3adant1 | ⊢ ( ( 𝜑 ∧ 𝑥 ⊆ ℝ ∧ ( vol* ‘ 𝑥 ) ∈ ℝ ) → ( vol* ‘ ( 𝑥 ∩ ( 𝐹 ‘ 𝑛 ) ) ) ∈ ℝ ) |
| 68 | 67 | adantr | ⊢ ( ( ( 𝜑 ∧ 𝑥 ⊆ ℝ ∧ ( vol* ‘ 𝑥 ) ∈ ℝ ) ∧ 𝑛 ∈ ℕ ) → ( vol* ‘ ( 𝑥 ∩ ( 𝐹 ‘ 𝑛 ) ) ) ∈ ℝ ) |
| 69 | 61 3 64 68 | ovoliun | ⊢ ( ( 𝜑 ∧ 𝑥 ⊆ ℝ ∧ ( vol* ‘ 𝑥 ) ∈ ℝ ) → ( vol* ‘ ∪ 𝑛 ∈ ℕ ( 𝑥 ∩ ( 𝐹 ‘ 𝑛 ) ) ) ≤ sup ( ran seq 1 ( + , 𝐻 ) , ℝ* , < ) ) |
| 70 | 60 69 | eqbrtrrd | ⊢ ( ( 𝜑 ∧ 𝑥 ⊆ ℝ ∧ ( vol* ‘ 𝑥 ) ∈ ℝ ) → ( vol* ‘ ( 𝑥 ∩ ∪ ran 𝐹 ) ) ≤ sup ( ran seq 1 ( + , 𝐻 ) , ℝ* , < ) ) |
| 71 | 1 | 3ad2ant1 | ⊢ ( ( 𝜑 ∧ 𝑥 ⊆ ℝ ∧ ( vol* ‘ 𝑥 ) ∈ ℝ ) → 𝐹 : ℕ ⟶ dom vol ) |
| 72 | 2 | 3ad2ant1 | ⊢ ( ( 𝜑 ∧ 𝑥 ⊆ ℝ ∧ ( vol* ‘ 𝑥 ) ∈ ℝ ) → Disj 𝑖 ∈ ℕ ( 𝐹 ‘ 𝑖 ) ) |
| 73 | 71 72 3 16 50 | voliunlem1 | ⊢ ( ( ( 𝜑 ∧ 𝑥 ⊆ ℝ ∧ ( vol* ‘ 𝑥 ) ∈ ℝ ) ∧ 𝑘 ∈ ℕ ) → ( ( seq 1 ( + , 𝐻 ) ‘ 𝑘 ) + ( vol* ‘ ( 𝑥 ∖ ∪ ran 𝐹 ) ) ) ≤ ( vol* ‘ 𝑥 ) ) |
| 74 | 44 | ffvelcdmda | ⊢ ( ( ( 𝜑 ∧ 𝑥 ⊆ ℝ ∧ ( vol* ‘ 𝑥 ) ∈ ℝ ) ∧ 𝑘 ∈ ℕ ) → ( seq 1 ( + , 𝐻 ) ‘ 𝑘 ) ∈ ℝ ) |
| 75 | 25 | adantr | ⊢ ( ( ( 𝜑 ∧ 𝑥 ⊆ ℝ ∧ ( vol* ‘ 𝑥 ) ∈ ℝ ) ∧ 𝑘 ∈ ℕ ) → ( vol* ‘ ( 𝑥 ∖ ∪ ran 𝐹 ) ) ∈ ℝ ) |
| 76 | simpl3 | ⊢ ( ( ( 𝜑 ∧ 𝑥 ⊆ ℝ ∧ ( vol* ‘ 𝑥 ) ∈ ℝ ) ∧ 𝑘 ∈ ℕ ) → ( vol* ‘ 𝑥 ) ∈ ℝ ) | |
| 77 | leaddsub | ⊢ ( ( ( seq 1 ( + , 𝐻 ) ‘ 𝑘 ) ∈ ℝ ∧ ( vol* ‘ ( 𝑥 ∖ ∪ ran 𝐹 ) ) ∈ ℝ ∧ ( vol* ‘ 𝑥 ) ∈ ℝ ) → ( ( ( seq 1 ( + , 𝐻 ) ‘ 𝑘 ) + ( vol* ‘ ( 𝑥 ∖ ∪ ran 𝐹 ) ) ) ≤ ( vol* ‘ 𝑥 ) ↔ ( seq 1 ( + , 𝐻 ) ‘ 𝑘 ) ≤ ( ( vol* ‘ 𝑥 ) − ( vol* ‘ ( 𝑥 ∖ ∪ ran 𝐹 ) ) ) ) ) | |
| 78 | 74 75 76 77 | syl3anc | ⊢ ( ( ( 𝜑 ∧ 𝑥 ⊆ ℝ ∧ ( vol* ‘ 𝑥 ) ∈ ℝ ) ∧ 𝑘 ∈ ℕ ) → ( ( ( seq 1 ( + , 𝐻 ) ‘ 𝑘 ) + ( vol* ‘ ( 𝑥 ∖ ∪ ran 𝐹 ) ) ) ≤ ( vol* ‘ 𝑥 ) ↔ ( seq 1 ( + , 𝐻 ) ‘ 𝑘 ) ≤ ( ( vol* ‘ 𝑥 ) − ( vol* ‘ ( 𝑥 ∖ ∪ ran 𝐹 ) ) ) ) ) |
| 79 | 73 78 | mpbid | ⊢ ( ( ( 𝜑 ∧ 𝑥 ⊆ ℝ ∧ ( vol* ‘ 𝑥 ) ∈ ℝ ) ∧ 𝑘 ∈ ℕ ) → ( seq 1 ( + , 𝐻 ) ‘ 𝑘 ) ≤ ( ( vol* ‘ 𝑥 ) − ( vol* ‘ ( 𝑥 ∖ ∪ ran 𝐹 ) ) ) ) |
| 80 | 79 | ralrimiva | ⊢ ( ( 𝜑 ∧ 𝑥 ⊆ ℝ ∧ ( vol* ‘ 𝑥 ) ∈ ℝ ) → ∀ 𝑘 ∈ ℕ ( seq 1 ( + , 𝐻 ) ‘ 𝑘 ) ≤ ( ( vol* ‘ 𝑥 ) − ( vol* ‘ ( 𝑥 ∖ ∪ ran 𝐹 ) ) ) ) |
| 81 | ffn | ⊢ ( seq 1 ( + , 𝐻 ) : ℕ ⟶ ℝ → seq 1 ( + , 𝐻 ) Fn ℕ ) | |
| 82 | breq1 | ⊢ ( 𝑧 = ( seq 1 ( + , 𝐻 ) ‘ 𝑘 ) → ( 𝑧 ≤ ( ( vol* ‘ 𝑥 ) − ( vol* ‘ ( 𝑥 ∖ ∪ ran 𝐹 ) ) ) ↔ ( seq 1 ( + , 𝐻 ) ‘ 𝑘 ) ≤ ( ( vol* ‘ 𝑥 ) − ( vol* ‘ ( 𝑥 ∖ ∪ ran 𝐹 ) ) ) ) ) | |
| 83 | 82 | ralrn | ⊢ ( seq 1 ( + , 𝐻 ) Fn ℕ → ( ∀ 𝑧 ∈ ran seq 1 ( + , 𝐻 ) 𝑧 ≤ ( ( vol* ‘ 𝑥 ) − ( vol* ‘ ( 𝑥 ∖ ∪ ran 𝐹 ) ) ) ↔ ∀ 𝑘 ∈ ℕ ( seq 1 ( + , 𝐻 ) ‘ 𝑘 ) ≤ ( ( vol* ‘ 𝑥 ) − ( vol* ‘ ( 𝑥 ∖ ∪ ran 𝐹 ) ) ) ) ) |
| 84 | 44 81 83 | 3syl | ⊢ ( ( 𝜑 ∧ 𝑥 ⊆ ℝ ∧ ( vol* ‘ 𝑥 ) ∈ ℝ ) → ( ∀ 𝑧 ∈ ran seq 1 ( + , 𝐻 ) 𝑧 ≤ ( ( vol* ‘ 𝑥 ) − ( vol* ‘ ( 𝑥 ∖ ∪ ran 𝐹 ) ) ) ↔ ∀ 𝑘 ∈ ℕ ( seq 1 ( + , 𝐻 ) ‘ 𝑘 ) ≤ ( ( vol* ‘ 𝑥 ) − ( vol* ‘ ( 𝑥 ∖ ∪ ran 𝐹 ) ) ) ) ) |
| 85 | 80 84 | mpbird | ⊢ ( ( 𝜑 ∧ 𝑥 ⊆ ℝ ∧ ( vol* ‘ 𝑥 ) ∈ ℝ ) → ∀ 𝑧 ∈ ran seq 1 ( + , 𝐻 ) 𝑧 ≤ ( ( vol* ‘ 𝑥 ) − ( vol* ‘ ( 𝑥 ∖ ∪ ran 𝐹 ) ) ) ) |
| 86 | supxrleub | ⊢ ( ( ran seq 1 ( + , 𝐻 ) ⊆ ℝ* ∧ ( ( vol* ‘ 𝑥 ) − ( vol* ‘ ( 𝑥 ∖ ∪ ran 𝐹 ) ) ) ∈ ℝ* ) → ( sup ( ran seq 1 ( + , 𝐻 ) , ℝ* , < ) ≤ ( ( vol* ‘ 𝑥 ) − ( vol* ‘ ( 𝑥 ∖ ∪ ran 𝐹 ) ) ) ↔ ∀ 𝑧 ∈ ran seq 1 ( + , 𝐻 ) 𝑧 ≤ ( ( vol* ‘ 𝑥 ) − ( vol* ‘ ( 𝑥 ∖ ∪ ran 𝐹 ) ) ) ) ) | |
| 87 | 47 52 86 | syl2anc | ⊢ ( ( 𝜑 ∧ 𝑥 ⊆ ℝ ∧ ( vol* ‘ 𝑥 ) ∈ ℝ ) → ( sup ( ran seq 1 ( + , 𝐻 ) , ℝ* , < ) ≤ ( ( vol* ‘ 𝑥 ) − ( vol* ‘ ( 𝑥 ∖ ∪ ran 𝐹 ) ) ) ↔ ∀ 𝑧 ∈ ran seq 1 ( + , 𝐻 ) 𝑧 ≤ ( ( vol* ‘ 𝑥 ) − ( vol* ‘ ( 𝑥 ∖ ∪ ran 𝐹 ) ) ) ) ) |
| 88 | 85 87 | mpbird | ⊢ ( ( 𝜑 ∧ 𝑥 ⊆ ℝ ∧ ( vol* ‘ 𝑥 ) ∈ ℝ ) → sup ( ran seq 1 ( + , 𝐻 ) , ℝ* , < ) ≤ ( ( vol* ‘ 𝑥 ) − ( vol* ‘ ( 𝑥 ∖ ∪ ran 𝐹 ) ) ) ) |
| 89 | 29 49 52 70 88 | xrletrd | ⊢ ( ( 𝜑 ∧ 𝑥 ⊆ ℝ ∧ ( vol* ‘ 𝑥 ) ∈ ℝ ) → ( vol* ‘ ( 𝑥 ∩ ∪ ran 𝐹 ) ) ≤ ( ( vol* ‘ 𝑥 ) − ( vol* ‘ ( 𝑥 ∖ ∪ ran 𝐹 ) ) ) ) |
| 90 | leaddsub | ⊢ ( ( ( vol* ‘ ( 𝑥 ∩ ∪ ran 𝐹 ) ) ∈ ℝ ∧ ( vol* ‘ ( 𝑥 ∖ ∪ ran 𝐹 ) ) ∈ ℝ ∧ ( vol* ‘ 𝑥 ) ∈ ℝ ) → ( ( ( vol* ‘ ( 𝑥 ∩ ∪ ran 𝐹 ) ) + ( vol* ‘ ( 𝑥 ∖ ∪ ran 𝐹 ) ) ) ≤ ( vol* ‘ 𝑥 ) ↔ ( vol* ‘ ( 𝑥 ∩ ∪ ran 𝐹 ) ) ≤ ( ( vol* ‘ 𝑥 ) − ( vol* ‘ ( 𝑥 ∖ ∪ ran 𝐹 ) ) ) ) ) | |
| 91 | 20 25 50 90 | syl3anc | ⊢ ( ( 𝜑 ∧ 𝑥 ⊆ ℝ ∧ ( vol* ‘ 𝑥 ) ∈ ℝ ) → ( ( ( vol* ‘ ( 𝑥 ∩ ∪ ran 𝐹 ) ) + ( vol* ‘ ( 𝑥 ∖ ∪ ran 𝐹 ) ) ) ≤ ( vol* ‘ 𝑥 ) ↔ ( vol* ‘ ( 𝑥 ∩ ∪ ran 𝐹 ) ) ≤ ( ( vol* ‘ 𝑥 ) − ( vol* ‘ ( 𝑥 ∖ ∪ ran 𝐹 ) ) ) ) ) |
| 92 | 89 91 | mpbird | ⊢ ( ( 𝜑 ∧ 𝑥 ⊆ ℝ ∧ ( vol* ‘ 𝑥 ) ∈ ℝ ) → ( ( vol* ‘ ( 𝑥 ∩ ∪ ran 𝐹 ) ) + ( vol* ‘ ( 𝑥 ∖ ∪ ran 𝐹 ) ) ) ≤ ( vol* ‘ 𝑥 ) ) |
| 93 | 20 25 | readdcld | ⊢ ( ( 𝜑 ∧ 𝑥 ⊆ ℝ ∧ ( vol* ‘ 𝑥 ) ∈ ℝ ) → ( ( vol* ‘ ( 𝑥 ∩ ∪ ran 𝐹 ) ) + ( vol* ‘ ( 𝑥 ∖ ∪ ran 𝐹 ) ) ) ∈ ℝ ) |
| 94 | 50 93 | letri3d | ⊢ ( ( 𝜑 ∧ 𝑥 ⊆ ℝ ∧ ( vol* ‘ 𝑥 ) ∈ ℝ ) → ( ( vol* ‘ 𝑥 ) = ( ( vol* ‘ ( 𝑥 ∩ ∪ ran 𝐹 ) ) + ( vol* ‘ ( 𝑥 ∖ ∪ ran 𝐹 ) ) ) ↔ ( ( vol* ‘ 𝑥 ) ≤ ( ( vol* ‘ ( 𝑥 ∩ ∪ ran 𝐹 ) ) + ( vol* ‘ ( 𝑥 ∖ ∪ ran 𝐹 ) ) ) ∧ ( ( vol* ‘ ( 𝑥 ∩ ∪ ran 𝐹 ) ) + ( vol* ‘ ( 𝑥 ∖ ∪ ran 𝐹 ) ) ) ≤ ( vol* ‘ 𝑥 ) ) ) ) |
| 95 | 28 92 94 | mpbir2and | ⊢ ( ( 𝜑 ∧ 𝑥 ⊆ ℝ ∧ ( vol* ‘ 𝑥 ) ∈ ℝ ) → ( vol* ‘ 𝑥 ) = ( ( vol* ‘ ( 𝑥 ∩ ∪ ran 𝐹 ) ) + ( vol* ‘ ( 𝑥 ∖ ∪ ran 𝐹 ) ) ) ) |
| 96 | 95 | 3expia | ⊢ ( ( 𝜑 ∧ 𝑥 ⊆ ℝ ) → ( ( vol* ‘ 𝑥 ) ∈ ℝ → ( vol* ‘ 𝑥 ) = ( ( vol* ‘ ( 𝑥 ∩ ∪ ran 𝐹 ) ) + ( vol* ‘ ( 𝑥 ∖ ∪ ran 𝐹 ) ) ) ) ) |
| 97 | 12 96 | sylan2 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝒫 ℝ ) → ( ( vol* ‘ 𝑥 ) ∈ ℝ → ( vol* ‘ 𝑥 ) = ( ( vol* ‘ ( 𝑥 ∩ ∪ ran 𝐹 ) ) + ( vol* ‘ ( 𝑥 ∖ ∪ ran 𝐹 ) ) ) ) ) |
| 98 | 97 | ralrimiva | ⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝒫 ℝ ( ( vol* ‘ 𝑥 ) ∈ ℝ → ( vol* ‘ 𝑥 ) = ( ( vol* ‘ ( 𝑥 ∩ ∪ ran 𝐹 ) ) + ( vol* ‘ ( 𝑥 ∖ ∪ ran 𝐹 ) ) ) ) ) |
| 99 | ismbl | ⊢ ( ∪ ran 𝐹 ∈ dom vol ↔ ( ∪ ran 𝐹 ⊆ ℝ ∧ ∀ 𝑥 ∈ 𝒫 ℝ ( ( vol* ‘ 𝑥 ) ∈ ℝ → ( vol* ‘ 𝑥 ) = ( ( vol* ‘ ( 𝑥 ∩ ∪ ran 𝐹 ) ) + ( vol* ‘ ( 𝑥 ∖ ∪ ran 𝐹 ) ) ) ) ) ) | |
| 100 | 11 98 99 | sylanbrc | ⊢ ( 𝜑 → ∪ ran 𝐹 ∈ dom vol ) |