This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for voliun . (Contributed by Mario Carneiro, 20-Mar-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | voliunlem.3 | |- ( ph -> F : NN --> dom vol ) |
|
| voliunlem.5 | |- ( ph -> Disj_ i e. NN ( F ` i ) ) |
||
| voliunlem1.6 | |- H = ( n e. NN |-> ( vol* ` ( E i^i ( F ` n ) ) ) ) |
||
| voliunlem1.7 | |- ( ph -> E C_ RR ) |
||
| voliunlem1.8 | |- ( ph -> ( vol* ` E ) e. RR ) |
||
| Assertion | voliunlem1 | |- ( ( ph /\ k e. NN ) -> ( ( seq 1 ( + , H ) ` k ) + ( vol* ` ( E \ U. ran F ) ) ) <_ ( vol* ` E ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | voliunlem.3 | |- ( ph -> F : NN --> dom vol ) |
|
| 2 | voliunlem.5 | |- ( ph -> Disj_ i e. NN ( F ` i ) ) |
|
| 3 | voliunlem1.6 | |- H = ( n e. NN |-> ( vol* ` ( E i^i ( F ` n ) ) ) ) |
|
| 4 | voliunlem1.7 | |- ( ph -> E C_ RR ) |
|
| 5 | voliunlem1.8 | |- ( ph -> ( vol* ` E ) e. RR ) |
|
| 6 | difss | |- ( E \ U. ran F ) C_ E |
|
| 7 | 5 | adantr | |- ( ( ph /\ k e. NN ) -> ( vol* ` E ) e. RR ) |
| 8 | ovolsscl | |- ( ( ( E \ U. ran F ) C_ E /\ E C_ RR /\ ( vol* ` E ) e. RR ) -> ( vol* ` ( E \ U. ran F ) ) e. RR ) |
|
| 9 | 6 4 7 8 | mp3an2ani | |- ( ( ph /\ k e. NN ) -> ( vol* ` ( E \ U. ran F ) ) e. RR ) |
| 10 | difss | |- ( E \ U_ n e. ( 1 ... k ) ( F ` n ) ) C_ E |
|
| 11 | ovolsscl | |- ( ( ( E \ U_ n e. ( 1 ... k ) ( F ` n ) ) C_ E /\ E C_ RR /\ ( vol* ` E ) e. RR ) -> ( vol* ` ( E \ U_ n e. ( 1 ... k ) ( F ` n ) ) ) e. RR ) |
|
| 12 | 10 4 7 11 | mp3an2ani | |- ( ( ph /\ k e. NN ) -> ( vol* ` ( E \ U_ n e. ( 1 ... k ) ( F ` n ) ) ) e. RR ) |
| 13 | inss1 | |- ( E i^i U_ n e. ( 1 ... k ) ( F ` n ) ) C_ E |
|
| 14 | ovolsscl | |- ( ( ( E i^i U_ n e. ( 1 ... k ) ( F ` n ) ) C_ E /\ E C_ RR /\ ( vol* ` E ) e. RR ) -> ( vol* ` ( E i^i U_ n e. ( 1 ... k ) ( F ` n ) ) ) e. RR ) |
|
| 15 | 13 4 7 14 | mp3an2ani | |- ( ( ph /\ k e. NN ) -> ( vol* ` ( E i^i U_ n e. ( 1 ... k ) ( F ` n ) ) ) e. RR ) |
| 16 | elfznn | |- ( n e. ( 1 ... k ) -> n e. NN ) |
|
| 17 | 1 | ffnd | |- ( ph -> F Fn NN ) |
| 18 | fnfvelrn | |- ( ( F Fn NN /\ n e. NN ) -> ( F ` n ) e. ran F ) |
|
| 19 | 17 18 | sylan | |- ( ( ph /\ n e. NN ) -> ( F ` n ) e. ran F ) |
| 20 | elssuni | |- ( ( F ` n ) e. ran F -> ( F ` n ) C_ U. ran F ) |
|
| 21 | 19 20 | syl | |- ( ( ph /\ n e. NN ) -> ( F ` n ) C_ U. ran F ) |
| 22 | 16 21 | sylan2 | |- ( ( ph /\ n e. ( 1 ... k ) ) -> ( F ` n ) C_ U. ran F ) |
| 23 | 22 | ralrimiva | |- ( ph -> A. n e. ( 1 ... k ) ( F ` n ) C_ U. ran F ) |
| 24 | 23 | adantr | |- ( ( ph /\ k e. NN ) -> A. n e. ( 1 ... k ) ( F ` n ) C_ U. ran F ) |
| 25 | iunss | |- ( U_ n e. ( 1 ... k ) ( F ` n ) C_ U. ran F <-> A. n e. ( 1 ... k ) ( F ` n ) C_ U. ran F ) |
|
| 26 | 24 25 | sylibr | |- ( ( ph /\ k e. NN ) -> U_ n e. ( 1 ... k ) ( F ` n ) C_ U. ran F ) |
| 27 | 26 | sscond | |- ( ( ph /\ k e. NN ) -> ( E \ U. ran F ) C_ ( E \ U_ n e. ( 1 ... k ) ( F ` n ) ) ) |
| 28 | 4 | adantr | |- ( ( ph /\ k e. NN ) -> E C_ RR ) |
| 29 | 10 28 | sstrid | |- ( ( ph /\ k e. NN ) -> ( E \ U_ n e. ( 1 ... k ) ( F ` n ) ) C_ RR ) |
| 30 | ovolss | |- ( ( ( E \ U. ran F ) C_ ( E \ U_ n e. ( 1 ... k ) ( F ` n ) ) /\ ( E \ U_ n e. ( 1 ... k ) ( F ` n ) ) C_ RR ) -> ( vol* ` ( E \ U. ran F ) ) <_ ( vol* ` ( E \ U_ n e. ( 1 ... k ) ( F ` n ) ) ) ) |
|
| 31 | 27 29 30 | syl2anc | |- ( ( ph /\ k e. NN ) -> ( vol* ` ( E \ U. ran F ) ) <_ ( vol* ` ( E \ U_ n e. ( 1 ... k ) ( F ` n ) ) ) ) |
| 32 | 9 12 15 31 | leadd2dd | |- ( ( ph /\ k e. NN ) -> ( ( vol* ` ( E i^i U_ n e. ( 1 ... k ) ( F ` n ) ) ) + ( vol* ` ( E \ U. ran F ) ) ) <_ ( ( vol* ` ( E i^i U_ n e. ( 1 ... k ) ( F ` n ) ) ) + ( vol* ` ( E \ U_ n e. ( 1 ... k ) ( F ` n ) ) ) ) ) |
| 33 | oveq2 | |- ( z = 1 -> ( 1 ... z ) = ( 1 ... 1 ) ) |
|
| 34 | 33 | iuneq1d | |- ( z = 1 -> U_ n e. ( 1 ... z ) ( F ` n ) = U_ n e. ( 1 ... 1 ) ( F ` n ) ) |
| 35 | 34 | eleq1d | |- ( z = 1 -> ( U_ n e. ( 1 ... z ) ( F ` n ) e. dom vol <-> U_ n e. ( 1 ... 1 ) ( F ` n ) e. dom vol ) ) |
| 36 | 34 | ineq2d | |- ( z = 1 -> ( E i^i U_ n e. ( 1 ... z ) ( F ` n ) ) = ( E i^i U_ n e. ( 1 ... 1 ) ( F ` n ) ) ) |
| 37 | 36 | fveq2d | |- ( z = 1 -> ( vol* ` ( E i^i U_ n e. ( 1 ... z ) ( F ` n ) ) ) = ( vol* ` ( E i^i U_ n e. ( 1 ... 1 ) ( F ` n ) ) ) ) |
| 38 | fveq2 | |- ( z = 1 -> ( seq 1 ( + , H ) ` z ) = ( seq 1 ( + , H ) ` 1 ) ) |
|
| 39 | 37 38 | eqeq12d | |- ( z = 1 -> ( ( vol* ` ( E i^i U_ n e. ( 1 ... z ) ( F ` n ) ) ) = ( seq 1 ( + , H ) ` z ) <-> ( vol* ` ( E i^i U_ n e. ( 1 ... 1 ) ( F ` n ) ) ) = ( seq 1 ( + , H ) ` 1 ) ) ) |
| 40 | 35 39 | anbi12d | |- ( z = 1 -> ( ( U_ n e. ( 1 ... z ) ( F ` n ) e. dom vol /\ ( vol* ` ( E i^i U_ n e. ( 1 ... z ) ( F ` n ) ) ) = ( seq 1 ( + , H ) ` z ) ) <-> ( U_ n e. ( 1 ... 1 ) ( F ` n ) e. dom vol /\ ( vol* ` ( E i^i U_ n e. ( 1 ... 1 ) ( F ` n ) ) ) = ( seq 1 ( + , H ) ` 1 ) ) ) ) |
| 41 | 40 | imbi2d | |- ( z = 1 -> ( ( ph -> ( U_ n e. ( 1 ... z ) ( F ` n ) e. dom vol /\ ( vol* ` ( E i^i U_ n e. ( 1 ... z ) ( F ` n ) ) ) = ( seq 1 ( + , H ) ` z ) ) ) <-> ( ph -> ( U_ n e. ( 1 ... 1 ) ( F ` n ) e. dom vol /\ ( vol* ` ( E i^i U_ n e. ( 1 ... 1 ) ( F ` n ) ) ) = ( seq 1 ( + , H ) ` 1 ) ) ) ) ) |
| 42 | oveq2 | |- ( z = k -> ( 1 ... z ) = ( 1 ... k ) ) |
|
| 43 | 42 | iuneq1d | |- ( z = k -> U_ n e. ( 1 ... z ) ( F ` n ) = U_ n e. ( 1 ... k ) ( F ` n ) ) |
| 44 | 43 | eleq1d | |- ( z = k -> ( U_ n e. ( 1 ... z ) ( F ` n ) e. dom vol <-> U_ n e. ( 1 ... k ) ( F ` n ) e. dom vol ) ) |
| 45 | 43 | ineq2d | |- ( z = k -> ( E i^i U_ n e. ( 1 ... z ) ( F ` n ) ) = ( E i^i U_ n e. ( 1 ... k ) ( F ` n ) ) ) |
| 46 | 45 | fveq2d | |- ( z = k -> ( vol* ` ( E i^i U_ n e. ( 1 ... z ) ( F ` n ) ) ) = ( vol* ` ( E i^i U_ n e. ( 1 ... k ) ( F ` n ) ) ) ) |
| 47 | fveq2 | |- ( z = k -> ( seq 1 ( + , H ) ` z ) = ( seq 1 ( + , H ) ` k ) ) |
|
| 48 | 46 47 | eqeq12d | |- ( z = k -> ( ( vol* ` ( E i^i U_ n e. ( 1 ... z ) ( F ` n ) ) ) = ( seq 1 ( + , H ) ` z ) <-> ( vol* ` ( E i^i U_ n e. ( 1 ... k ) ( F ` n ) ) ) = ( seq 1 ( + , H ) ` k ) ) ) |
| 49 | 44 48 | anbi12d | |- ( z = k -> ( ( U_ n e. ( 1 ... z ) ( F ` n ) e. dom vol /\ ( vol* ` ( E i^i U_ n e. ( 1 ... z ) ( F ` n ) ) ) = ( seq 1 ( + , H ) ` z ) ) <-> ( U_ n e. ( 1 ... k ) ( F ` n ) e. dom vol /\ ( vol* ` ( E i^i U_ n e. ( 1 ... k ) ( F ` n ) ) ) = ( seq 1 ( + , H ) ` k ) ) ) ) |
| 50 | 49 | imbi2d | |- ( z = k -> ( ( ph -> ( U_ n e. ( 1 ... z ) ( F ` n ) e. dom vol /\ ( vol* ` ( E i^i U_ n e. ( 1 ... z ) ( F ` n ) ) ) = ( seq 1 ( + , H ) ` z ) ) ) <-> ( ph -> ( U_ n e. ( 1 ... k ) ( F ` n ) e. dom vol /\ ( vol* ` ( E i^i U_ n e. ( 1 ... k ) ( F ` n ) ) ) = ( seq 1 ( + , H ) ` k ) ) ) ) ) |
| 51 | oveq2 | |- ( z = ( k + 1 ) -> ( 1 ... z ) = ( 1 ... ( k + 1 ) ) ) |
|
| 52 | 51 | iuneq1d | |- ( z = ( k + 1 ) -> U_ n e. ( 1 ... z ) ( F ` n ) = U_ n e. ( 1 ... ( k + 1 ) ) ( F ` n ) ) |
| 53 | 52 | eleq1d | |- ( z = ( k + 1 ) -> ( U_ n e. ( 1 ... z ) ( F ` n ) e. dom vol <-> U_ n e. ( 1 ... ( k + 1 ) ) ( F ` n ) e. dom vol ) ) |
| 54 | 52 | ineq2d | |- ( z = ( k + 1 ) -> ( E i^i U_ n e. ( 1 ... z ) ( F ` n ) ) = ( E i^i U_ n e. ( 1 ... ( k + 1 ) ) ( F ` n ) ) ) |
| 55 | 54 | fveq2d | |- ( z = ( k + 1 ) -> ( vol* ` ( E i^i U_ n e. ( 1 ... z ) ( F ` n ) ) ) = ( vol* ` ( E i^i U_ n e. ( 1 ... ( k + 1 ) ) ( F ` n ) ) ) ) |
| 56 | fveq2 | |- ( z = ( k + 1 ) -> ( seq 1 ( + , H ) ` z ) = ( seq 1 ( + , H ) ` ( k + 1 ) ) ) |
|
| 57 | 55 56 | eqeq12d | |- ( z = ( k + 1 ) -> ( ( vol* ` ( E i^i U_ n e. ( 1 ... z ) ( F ` n ) ) ) = ( seq 1 ( + , H ) ` z ) <-> ( vol* ` ( E i^i U_ n e. ( 1 ... ( k + 1 ) ) ( F ` n ) ) ) = ( seq 1 ( + , H ) ` ( k + 1 ) ) ) ) |
| 58 | 53 57 | anbi12d | |- ( z = ( k + 1 ) -> ( ( U_ n e. ( 1 ... z ) ( F ` n ) e. dom vol /\ ( vol* ` ( E i^i U_ n e. ( 1 ... z ) ( F ` n ) ) ) = ( seq 1 ( + , H ) ` z ) ) <-> ( U_ n e. ( 1 ... ( k + 1 ) ) ( F ` n ) e. dom vol /\ ( vol* ` ( E i^i U_ n e. ( 1 ... ( k + 1 ) ) ( F ` n ) ) ) = ( seq 1 ( + , H ) ` ( k + 1 ) ) ) ) ) |
| 59 | 58 | imbi2d | |- ( z = ( k + 1 ) -> ( ( ph -> ( U_ n e. ( 1 ... z ) ( F ` n ) e. dom vol /\ ( vol* ` ( E i^i U_ n e. ( 1 ... z ) ( F ` n ) ) ) = ( seq 1 ( + , H ) ` z ) ) ) <-> ( ph -> ( U_ n e. ( 1 ... ( k + 1 ) ) ( F ` n ) e. dom vol /\ ( vol* ` ( E i^i U_ n e. ( 1 ... ( k + 1 ) ) ( F ` n ) ) ) = ( seq 1 ( + , H ) ` ( k + 1 ) ) ) ) ) ) |
| 60 | 1z | |- 1 e. ZZ |
|
| 61 | fzsn | |- ( 1 e. ZZ -> ( 1 ... 1 ) = { 1 } ) |
|
| 62 | iuneq1 | |- ( ( 1 ... 1 ) = { 1 } -> U_ n e. ( 1 ... 1 ) ( F ` n ) = U_ n e. { 1 } ( F ` n ) ) |
|
| 63 | 60 61 62 | mp2b | |- U_ n e. ( 1 ... 1 ) ( F ` n ) = U_ n e. { 1 } ( F ` n ) |
| 64 | 1ex | |- 1 e. _V |
|
| 65 | fveq2 | |- ( n = 1 -> ( F ` n ) = ( F ` 1 ) ) |
|
| 66 | 64 65 | iunxsn | |- U_ n e. { 1 } ( F ` n ) = ( F ` 1 ) |
| 67 | 63 66 | eqtri | |- U_ n e. ( 1 ... 1 ) ( F ` n ) = ( F ` 1 ) |
| 68 | 1nn | |- 1 e. NN |
|
| 69 | ffvelcdm | |- ( ( F : NN --> dom vol /\ 1 e. NN ) -> ( F ` 1 ) e. dom vol ) |
|
| 70 | 1 68 69 | sylancl | |- ( ph -> ( F ` 1 ) e. dom vol ) |
| 71 | 67 70 | eqeltrid | |- ( ph -> U_ n e. ( 1 ... 1 ) ( F ` n ) e. dom vol ) |
| 72 | 65 | ineq2d | |- ( n = 1 -> ( E i^i ( F ` n ) ) = ( E i^i ( F ` 1 ) ) ) |
| 73 | 72 | fveq2d | |- ( n = 1 -> ( vol* ` ( E i^i ( F ` n ) ) ) = ( vol* ` ( E i^i ( F ` 1 ) ) ) ) |
| 74 | fvex | |- ( vol* ` ( E i^i ( F ` 1 ) ) ) e. _V |
|
| 75 | 73 3 74 | fvmpt | |- ( 1 e. NN -> ( H ` 1 ) = ( vol* ` ( E i^i ( F ` 1 ) ) ) ) |
| 76 | 68 75 | ax-mp | |- ( H ` 1 ) = ( vol* ` ( E i^i ( F ` 1 ) ) ) |
| 77 | seq1 | |- ( 1 e. ZZ -> ( seq 1 ( + , H ) ` 1 ) = ( H ` 1 ) ) |
|
| 78 | 60 77 | ax-mp | |- ( seq 1 ( + , H ) ` 1 ) = ( H ` 1 ) |
| 79 | 67 | ineq2i | |- ( E i^i U_ n e. ( 1 ... 1 ) ( F ` n ) ) = ( E i^i ( F ` 1 ) ) |
| 80 | 79 | fveq2i | |- ( vol* ` ( E i^i U_ n e. ( 1 ... 1 ) ( F ` n ) ) ) = ( vol* ` ( E i^i ( F ` 1 ) ) ) |
| 81 | 76 78 80 | 3eqtr4ri | |- ( vol* ` ( E i^i U_ n e. ( 1 ... 1 ) ( F ` n ) ) ) = ( seq 1 ( + , H ) ` 1 ) |
| 82 | 71 81 | jctir | |- ( ph -> ( U_ n e. ( 1 ... 1 ) ( F ` n ) e. dom vol /\ ( vol* ` ( E i^i U_ n e. ( 1 ... 1 ) ( F ` n ) ) ) = ( seq 1 ( + , H ) ` 1 ) ) ) |
| 83 | peano2nn | |- ( k e. NN -> ( k + 1 ) e. NN ) |
|
| 84 | ffvelcdm | |- ( ( F : NN --> dom vol /\ ( k + 1 ) e. NN ) -> ( F ` ( k + 1 ) ) e. dom vol ) |
|
| 85 | 1 83 84 | syl2an | |- ( ( ph /\ k e. NN ) -> ( F ` ( k + 1 ) ) e. dom vol ) |
| 86 | unmbl | |- ( ( U_ n e. ( 1 ... k ) ( F ` n ) e. dom vol /\ ( F ` ( k + 1 ) ) e. dom vol ) -> ( U_ n e. ( 1 ... k ) ( F ` n ) u. ( F ` ( k + 1 ) ) ) e. dom vol ) |
|
| 87 | 86 | ex | |- ( U_ n e. ( 1 ... k ) ( F ` n ) e. dom vol -> ( ( F ` ( k + 1 ) ) e. dom vol -> ( U_ n e. ( 1 ... k ) ( F ` n ) u. ( F ` ( k + 1 ) ) ) e. dom vol ) ) |
| 88 | 85 87 | syl5com | |- ( ( ph /\ k e. NN ) -> ( U_ n e. ( 1 ... k ) ( F ` n ) e. dom vol -> ( U_ n e. ( 1 ... k ) ( F ` n ) u. ( F ` ( k + 1 ) ) ) e. dom vol ) ) |
| 89 | simpr | |- ( ( ph /\ k e. NN ) -> k e. NN ) |
|
| 90 | nnuz | |- NN = ( ZZ>= ` 1 ) |
|
| 91 | 89 90 | eleqtrdi | |- ( ( ph /\ k e. NN ) -> k e. ( ZZ>= ` 1 ) ) |
| 92 | fzsuc | |- ( k e. ( ZZ>= ` 1 ) -> ( 1 ... ( k + 1 ) ) = ( ( 1 ... k ) u. { ( k + 1 ) } ) ) |
|
| 93 | iuneq1 | |- ( ( 1 ... ( k + 1 ) ) = ( ( 1 ... k ) u. { ( k + 1 ) } ) -> U_ n e. ( 1 ... ( k + 1 ) ) ( F ` n ) = U_ n e. ( ( 1 ... k ) u. { ( k + 1 ) } ) ( F ` n ) ) |
|
| 94 | 91 92 93 | 3syl | |- ( ( ph /\ k e. NN ) -> U_ n e. ( 1 ... ( k + 1 ) ) ( F ` n ) = U_ n e. ( ( 1 ... k ) u. { ( k + 1 ) } ) ( F ` n ) ) |
| 95 | iunxun | |- U_ n e. ( ( 1 ... k ) u. { ( k + 1 ) } ) ( F ` n ) = ( U_ n e. ( 1 ... k ) ( F ` n ) u. U_ n e. { ( k + 1 ) } ( F ` n ) ) |
|
| 96 | ovex | |- ( k + 1 ) e. _V |
|
| 97 | fveq2 | |- ( n = ( k + 1 ) -> ( F ` n ) = ( F ` ( k + 1 ) ) ) |
|
| 98 | 96 97 | iunxsn | |- U_ n e. { ( k + 1 ) } ( F ` n ) = ( F ` ( k + 1 ) ) |
| 99 | 98 | uneq2i | |- ( U_ n e. ( 1 ... k ) ( F ` n ) u. U_ n e. { ( k + 1 ) } ( F ` n ) ) = ( U_ n e. ( 1 ... k ) ( F ` n ) u. ( F ` ( k + 1 ) ) ) |
| 100 | 95 99 | eqtri | |- U_ n e. ( ( 1 ... k ) u. { ( k + 1 ) } ) ( F ` n ) = ( U_ n e. ( 1 ... k ) ( F ` n ) u. ( F ` ( k + 1 ) ) ) |
| 101 | 94 100 | eqtrdi | |- ( ( ph /\ k e. NN ) -> U_ n e. ( 1 ... ( k + 1 ) ) ( F ` n ) = ( U_ n e. ( 1 ... k ) ( F ` n ) u. ( F ` ( k + 1 ) ) ) ) |
| 102 | 101 | eleq1d | |- ( ( ph /\ k e. NN ) -> ( U_ n e. ( 1 ... ( k + 1 ) ) ( F ` n ) e. dom vol <-> ( U_ n e. ( 1 ... k ) ( F ` n ) u. ( F ` ( k + 1 ) ) ) e. dom vol ) ) |
| 103 | 88 102 | sylibrd | |- ( ( ph /\ k e. NN ) -> ( U_ n e. ( 1 ... k ) ( F ` n ) e. dom vol -> U_ n e. ( 1 ... ( k + 1 ) ) ( F ` n ) e. dom vol ) ) |
| 104 | oveq1 | |- ( ( vol* ` ( E i^i U_ n e. ( 1 ... k ) ( F ` n ) ) ) = ( seq 1 ( + , H ) ` k ) -> ( ( vol* ` ( E i^i U_ n e. ( 1 ... k ) ( F ` n ) ) ) + ( vol* ` ( E i^i ( F ` ( k + 1 ) ) ) ) ) = ( ( seq 1 ( + , H ) ` k ) + ( vol* ` ( E i^i ( F ` ( k + 1 ) ) ) ) ) ) |
|
| 105 | inss1 | |- ( E i^i U_ n e. ( 1 ... ( k + 1 ) ) ( F ` n ) ) C_ E |
|
| 106 | 105 28 | sstrid | |- ( ( ph /\ k e. NN ) -> ( E i^i U_ n e. ( 1 ... ( k + 1 ) ) ( F ` n ) ) C_ RR ) |
| 107 | ovolsscl | |- ( ( ( E i^i U_ n e. ( 1 ... ( k + 1 ) ) ( F ` n ) ) C_ E /\ E C_ RR /\ ( vol* ` E ) e. RR ) -> ( vol* ` ( E i^i U_ n e. ( 1 ... ( k + 1 ) ) ( F ` n ) ) ) e. RR ) |
|
| 108 | 105 4 7 107 | mp3an2ani | |- ( ( ph /\ k e. NN ) -> ( vol* ` ( E i^i U_ n e. ( 1 ... ( k + 1 ) ) ( F ` n ) ) ) e. RR ) |
| 109 | mblsplit | |- ( ( ( F ` ( k + 1 ) ) e. dom vol /\ ( E i^i U_ n e. ( 1 ... ( k + 1 ) ) ( F ` n ) ) C_ RR /\ ( vol* ` ( E i^i U_ n e. ( 1 ... ( k + 1 ) ) ( F ` n ) ) ) e. RR ) -> ( vol* ` ( E i^i U_ n e. ( 1 ... ( k + 1 ) ) ( F ` n ) ) ) = ( ( vol* ` ( ( E i^i U_ n e. ( 1 ... ( k + 1 ) ) ( F ` n ) ) i^i ( F ` ( k + 1 ) ) ) ) + ( vol* ` ( ( E i^i U_ n e. ( 1 ... ( k + 1 ) ) ( F ` n ) ) \ ( F ` ( k + 1 ) ) ) ) ) ) |
|
| 110 | 85 106 108 109 | syl3anc | |- ( ( ph /\ k e. NN ) -> ( vol* ` ( E i^i U_ n e. ( 1 ... ( k + 1 ) ) ( F ` n ) ) ) = ( ( vol* ` ( ( E i^i U_ n e. ( 1 ... ( k + 1 ) ) ( F ` n ) ) i^i ( F ` ( k + 1 ) ) ) ) + ( vol* ` ( ( E i^i U_ n e. ( 1 ... ( k + 1 ) ) ( F ` n ) ) \ ( F ` ( k + 1 ) ) ) ) ) ) |
| 111 | in32 | |- ( ( E i^i U_ n e. ( 1 ... ( k + 1 ) ) ( F ` n ) ) i^i ( F ` ( k + 1 ) ) ) = ( ( E i^i ( F ` ( k + 1 ) ) ) i^i U_ n e. ( 1 ... ( k + 1 ) ) ( F ` n ) ) |
|
| 112 | inss2 | |- ( E i^i ( F ` ( k + 1 ) ) ) C_ ( F ` ( k + 1 ) ) |
|
| 113 | 83 | adantl | |- ( ( ph /\ k e. NN ) -> ( k + 1 ) e. NN ) |
| 114 | 113 90 | eleqtrdi | |- ( ( ph /\ k e. NN ) -> ( k + 1 ) e. ( ZZ>= ` 1 ) ) |
| 115 | eluzfz2 | |- ( ( k + 1 ) e. ( ZZ>= ` 1 ) -> ( k + 1 ) e. ( 1 ... ( k + 1 ) ) ) |
|
| 116 | 97 | ssiun2s | |- ( ( k + 1 ) e. ( 1 ... ( k + 1 ) ) -> ( F ` ( k + 1 ) ) C_ U_ n e. ( 1 ... ( k + 1 ) ) ( F ` n ) ) |
| 117 | 114 115 116 | 3syl | |- ( ( ph /\ k e. NN ) -> ( F ` ( k + 1 ) ) C_ U_ n e. ( 1 ... ( k + 1 ) ) ( F ` n ) ) |
| 118 | 112 117 | sstrid | |- ( ( ph /\ k e. NN ) -> ( E i^i ( F ` ( k + 1 ) ) ) C_ U_ n e. ( 1 ... ( k + 1 ) ) ( F ` n ) ) |
| 119 | dfss2 | |- ( ( E i^i ( F ` ( k + 1 ) ) ) C_ U_ n e. ( 1 ... ( k + 1 ) ) ( F ` n ) <-> ( ( E i^i ( F ` ( k + 1 ) ) ) i^i U_ n e. ( 1 ... ( k + 1 ) ) ( F ` n ) ) = ( E i^i ( F ` ( k + 1 ) ) ) ) |
|
| 120 | 118 119 | sylib | |- ( ( ph /\ k e. NN ) -> ( ( E i^i ( F ` ( k + 1 ) ) ) i^i U_ n e. ( 1 ... ( k + 1 ) ) ( F ` n ) ) = ( E i^i ( F ` ( k + 1 ) ) ) ) |
| 121 | 111 120 | eqtrid | |- ( ( ph /\ k e. NN ) -> ( ( E i^i U_ n e. ( 1 ... ( k + 1 ) ) ( F ` n ) ) i^i ( F ` ( k + 1 ) ) ) = ( E i^i ( F ` ( k + 1 ) ) ) ) |
| 122 | 121 | fveq2d | |- ( ( ph /\ k e. NN ) -> ( vol* ` ( ( E i^i U_ n e. ( 1 ... ( k + 1 ) ) ( F ` n ) ) i^i ( F ` ( k + 1 ) ) ) ) = ( vol* ` ( E i^i ( F ` ( k + 1 ) ) ) ) ) |
| 123 | indif2 | |- ( E i^i ( U_ n e. ( 1 ... ( k + 1 ) ) ( F ` n ) \ ( F ` ( k + 1 ) ) ) ) = ( ( E i^i U_ n e. ( 1 ... ( k + 1 ) ) ( F ` n ) ) \ ( F ` ( k + 1 ) ) ) |
|
| 124 | uncom | |- ( U_ n e. ( 1 ... k ) ( F ` n ) u. ( F ` ( k + 1 ) ) ) = ( ( F ` ( k + 1 ) ) u. U_ n e. ( 1 ... k ) ( F ` n ) ) |
|
| 125 | 101 124 | eqtr2di | |- ( ( ph /\ k e. NN ) -> ( ( F ` ( k + 1 ) ) u. U_ n e. ( 1 ... k ) ( F ` n ) ) = U_ n e. ( 1 ... ( k + 1 ) ) ( F ` n ) ) |
| 126 | 2 | ad2antrr | |- ( ( ( ph /\ k e. NN ) /\ n e. ( 1 ... k ) ) -> Disj_ i e. NN ( F ` i ) ) |
| 127 | 113 | adantr | |- ( ( ( ph /\ k e. NN ) /\ n e. ( 1 ... k ) ) -> ( k + 1 ) e. NN ) |
| 128 | 16 | adantl | |- ( ( ( ph /\ k e. NN ) /\ n e. ( 1 ... k ) ) -> n e. NN ) |
| 129 | 128 | nnred | |- ( ( ( ph /\ k e. NN ) /\ n e. ( 1 ... k ) ) -> n e. RR ) |
| 130 | elfzle2 | |- ( n e. ( 1 ... k ) -> n <_ k ) |
|
| 131 | 130 | adantl | |- ( ( ( ph /\ k e. NN ) /\ n e. ( 1 ... k ) ) -> n <_ k ) |
| 132 | 89 | adantr | |- ( ( ( ph /\ k e. NN ) /\ n e. ( 1 ... k ) ) -> k e. NN ) |
| 133 | nnleltp1 | |- ( ( n e. NN /\ k e. NN ) -> ( n <_ k <-> n < ( k + 1 ) ) ) |
|
| 134 | 128 132 133 | syl2anc | |- ( ( ( ph /\ k e. NN ) /\ n e. ( 1 ... k ) ) -> ( n <_ k <-> n < ( k + 1 ) ) ) |
| 135 | 131 134 | mpbid | |- ( ( ( ph /\ k e. NN ) /\ n e. ( 1 ... k ) ) -> n < ( k + 1 ) ) |
| 136 | 129 135 | gtned | |- ( ( ( ph /\ k e. NN ) /\ n e. ( 1 ... k ) ) -> ( k + 1 ) =/= n ) |
| 137 | fveq2 | |- ( i = ( k + 1 ) -> ( F ` i ) = ( F ` ( k + 1 ) ) ) |
|
| 138 | fveq2 | |- ( i = n -> ( F ` i ) = ( F ` n ) ) |
|
| 139 | 137 138 | disji2 | |- ( ( Disj_ i e. NN ( F ` i ) /\ ( ( k + 1 ) e. NN /\ n e. NN ) /\ ( k + 1 ) =/= n ) -> ( ( F ` ( k + 1 ) ) i^i ( F ` n ) ) = (/) ) |
| 140 | 126 127 128 136 139 | syl121anc | |- ( ( ( ph /\ k e. NN ) /\ n e. ( 1 ... k ) ) -> ( ( F ` ( k + 1 ) ) i^i ( F ` n ) ) = (/) ) |
| 141 | 140 | iuneq2dv | |- ( ( ph /\ k e. NN ) -> U_ n e. ( 1 ... k ) ( ( F ` ( k + 1 ) ) i^i ( F ` n ) ) = U_ n e. ( 1 ... k ) (/) ) |
| 142 | iunin2 | |- U_ n e. ( 1 ... k ) ( ( F ` ( k + 1 ) ) i^i ( F ` n ) ) = ( ( F ` ( k + 1 ) ) i^i U_ n e. ( 1 ... k ) ( F ` n ) ) |
|
| 143 | iun0 | |- U_ n e. ( 1 ... k ) (/) = (/) |
|
| 144 | 141 142 143 | 3eqtr3g | |- ( ( ph /\ k e. NN ) -> ( ( F ` ( k + 1 ) ) i^i U_ n e. ( 1 ... k ) ( F ` n ) ) = (/) ) |
| 145 | uneqdifeq | |- ( ( ( F ` ( k + 1 ) ) C_ U_ n e. ( 1 ... ( k + 1 ) ) ( F ` n ) /\ ( ( F ` ( k + 1 ) ) i^i U_ n e. ( 1 ... k ) ( F ` n ) ) = (/) ) -> ( ( ( F ` ( k + 1 ) ) u. U_ n e. ( 1 ... k ) ( F ` n ) ) = U_ n e. ( 1 ... ( k + 1 ) ) ( F ` n ) <-> ( U_ n e. ( 1 ... ( k + 1 ) ) ( F ` n ) \ ( F ` ( k + 1 ) ) ) = U_ n e. ( 1 ... k ) ( F ` n ) ) ) |
|
| 146 | 117 144 145 | syl2anc | |- ( ( ph /\ k e. NN ) -> ( ( ( F ` ( k + 1 ) ) u. U_ n e. ( 1 ... k ) ( F ` n ) ) = U_ n e. ( 1 ... ( k + 1 ) ) ( F ` n ) <-> ( U_ n e. ( 1 ... ( k + 1 ) ) ( F ` n ) \ ( F ` ( k + 1 ) ) ) = U_ n e. ( 1 ... k ) ( F ` n ) ) ) |
| 147 | 125 146 | mpbid | |- ( ( ph /\ k e. NN ) -> ( U_ n e. ( 1 ... ( k + 1 ) ) ( F ` n ) \ ( F ` ( k + 1 ) ) ) = U_ n e. ( 1 ... k ) ( F ` n ) ) |
| 148 | 147 | ineq2d | |- ( ( ph /\ k e. NN ) -> ( E i^i ( U_ n e. ( 1 ... ( k + 1 ) ) ( F ` n ) \ ( F ` ( k + 1 ) ) ) ) = ( E i^i U_ n e. ( 1 ... k ) ( F ` n ) ) ) |
| 149 | 123 148 | eqtr3id | |- ( ( ph /\ k e. NN ) -> ( ( E i^i U_ n e. ( 1 ... ( k + 1 ) ) ( F ` n ) ) \ ( F ` ( k + 1 ) ) ) = ( E i^i U_ n e. ( 1 ... k ) ( F ` n ) ) ) |
| 150 | 149 | fveq2d | |- ( ( ph /\ k e. NN ) -> ( vol* ` ( ( E i^i U_ n e. ( 1 ... ( k + 1 ) ) ( F ` n ) ) \ ( F ` ( k + 1 ) ) ) ) = ( vol* ` ( E i^i U_ n e. ( 1 ... k ) ( F ` n ) ) ) ) |
| 151 | 122 150 | oveq12d | |- ( ( ph /\ k e. NN ) -> ( ( vol* ` ( ( E i^i U_ n e. ( 1 ... ( k + 1 ) ) ( F ` n ) ) i^i ( F ` ( k + 1 ) ) ) ) + ( vol* ` ( ( E i^i U_ n e. ( 1 ... ( k + 1 ) ) ( F ` n ) ) \ ( F ` ( k + 1 ) ) ) ) ) = ( ( vol* ` ( E i^i ( F ` ( k + 1 ) ) ) ) + ( vol* ` ( E i^i U_ n e. ( 1 ... k ) ( F ` n ) ) ) ) ) |
| 152 | inss1 | |- ( E i^i ( F ` ( k + 1 ) ) ) C_ E |
|
| 153 | ovolsscl | |- ( ( ( E i^i ( F ` ( k + 1 ) ) ) C_ E /\ E C_ RR /\ ( vol* ` E ) e. RR ) -> ( vol* ` ( E i^i ( F ` ( k + 1 ) ) ) ) e. RR ) |
|
| 154 | 152 4 7 153 | mp3an2ani | |- ( ( ph /\ k e. NN ) -> ( vol* ` ( E i^i ( F ` ( k + 1 ) ) ) ) e. RR ) |
| 155 | 154 | recnd | |- ( ( ph /\ k e. NN ) -> ( vol* ` ( E i^i ( F ` ( k + 1 ) ) ) ) e. CC ) |
| 156 | 15 | recnd | |- ( ( ph /\ k e. NN ) -> ( vol* ` ( E i^i U_ n e. ( 1 ... k ) ( F ` n ) ) ) e. CC ) |
| 157 | 155 156 | addcomd | |- ( ( ph /\ k e. NN ) -> ( ( vol* ` ( E i^i ( F ` ( k + 1 ) ) ) ) + ( vol* ` ( E i^i U_ n e. ( 1 ... k ) ( F ` n ) ) ) ) = ( ( vol* ` ( E i^i U_ n e. ( 1 ... k ) ( F ` n ) ) ) + ( vol* ` ( E i^i ( F ` ( k + 1 ) ) ) ) ) ) |
| 158 | 110 151 157 | 3eqtrd | |- ( ( ph /\ k e. NN ) -> ( vol* ` ( E i^i U_ n e. ( 1 ... ( k + 1 ) ) ( F ` n ) ) ) = ( ( vol* ` ( E i^i U_ n e. ( 1 ... k ) ( F ` n ) ) ) + ( vol* ` ( E i^i ( F ` ( k + 1 ) ) ) ) ) ) |
| 159 | seqp1 | |- ( k e. ( ZZ>= ` 1 ) -> ( seq 1 ( + , H ) ` ( k + 1 ) ) = ( ( seq 1 ( + , H ) ` k ) + ( H ` ( k + 1 ) ) ) ) |
|
| 160 | 91 159 | syl | |- ( ( ph /\ k e. NN ) -> ( seq 1 ( + , H ) ` ( k + 1 ) ) = ( ( seq 1 ( + , H ) ` k ) + ( H ` ( k + 1 ) ) ) ) |
| 161 | 97 | ineq2d | |- ( n = ( k + 1 ) -> ( E i^i ( F ` n ) ) = ( E i^i ( F ` ( k + 1 ) ) ) ) |
| 162 | 161 | fveq2d | |- ( n = ( k + 1 ) -> ( vol* ` ( E i^i ( F ` n ) ) ) = ( vol* ` ( E i^i ( F ` ( k + 1 ) ) ) ) ) |
| 163 | fvex | |- ( vol* ` ( E i^i ( F ` ( k + 1 ) ) ) ) e. _V |
|
| 164 | 162 3 163 | fvmpt | |- ( ( k + 1 ) e. NN -> ( H ` ( k + 1 ) ) = ( vol* ` ( E i^i ( F ` ( k + 1 ) ) ) ) ) |
| 165 | 113 164 | syl | |- ( ( ph /\ k e. NN ) -> ( H ` ( k + 1 ) ) = ( vol* ` ( E i^i ( F ` ( k + 1 ) ) ) ) ) |
| 166 | 165 | oveq2d | |- ( ( ph /\ k e. NN ) -> ( ( seq 1 ( + , H ) ` k ) + ( H ` ( k + 1 ) ) ) = ( ( seq 1 ( + , H ) ` k ) + ( vol* ` ( E i^i ( F ` ( k + 1 ) ) ) ) ) ) |
| 167 | 160 166 | eqtrd | |- ( ( ph /\ k e. NN ) -> ( seq 1 ( + , H ) ` ( k + 1 ) ) = ( ( seq 1 ( + , H ) ` k ) + ( vol* ` ( E i^i ( F ` ( k + 1 ) ) ) ) ) ) |
| 168 | 158 167 | eqeq12d | |- ( ( ph /\ k e. NN ) -> ( ( vol* ` ( E i^i U_ n e. ( 1 ... ( k + 1 ) ) ( F ` n ) ) ) = ( seq 1 ( + , H ) ` ( k + 1 ) ) <-> ( ( vol* ` ( E i^i U_ n e. ( 1 ... k ) ( F ` n ) ) ) + ( vol* ` ( E i^i ( F ` ( k + 1 ) ) ) ) ) = ( ( seq 1 ( + , H ) ` k ) + ( vol* ` ( E i^i ( F ` ( k + 1 ) ) ) ) ) ) ) |
| 169 | 104 168 | imbitrrid | |- ( ( ph /\ k e. NN ) -> ( ( vol* ` ( E i^i U_ n e. ( 1 ... k ) ( F ` n ) ) ) = ( seq 1 ( + , H ) ` k ) -> ( vol* ` ( E i^i U_ n e. ( 1 ... ( k + 1 ) ) ( F ` n ) ) ) = ( seq 1 ( + , H ) ` ( k + 1 ) ) ) ) |
| 170 | 103 169 | anim12d | |- ( ( ph /\ k e. NN ) -> ( ( U_ n e. ( 1 ... k ) ( F ` n ) e. dom vol /\ ( vol* ` ( E i^i U_ n e. ( 1 ... k ) ( F ` n ) ) ) = ( seq 1 ( + , H ) ` k ) ) -> ( U_ n e. ( 1 ... ( k + 1 ) ) ( F ` n ) e. dom vol /\ ( vol* ` ( E i^i U_ n e. ( 1 ... ( k + 1 ) ) ( F ` n ) ) ) = ( seq 1 ( + , H ) ` ( k + 1 ) ) ) ) ) |
| 171 | 170 | expcom | |- ( k e. NN -> ( ph -> ( ( U_ n e. ( 1 ... k ) ( F ` n ) e. dom vol /\ ( vol* ` ( E i^i U_ n e. ( 1 ... k ) ( F ` n ) ) ) = ( seq 1 ( + , H ) ` k ) ) -> ( U_ n e. ( 1 ... ( k + 1 ) ) ( F ` n ) e. dom vol /\ ( vol* ` ( E i^i U_ n e. ( 1 ... ( k + 1 ) ) ( F ` n ) ) ) = ( seq 1 ( + , H ) ` ( k + 1 ) ) ) ) ) ) |
| 172 | 171 | a2d | |- ( k e. NN -> ( ( ph -> ( U_ n e. ( 1 ... k ) ( F ` n ) e. dom vol /\ ( vol* ` ( E i^i U_ n e. ( 1 ... k ) ( F ` n ) ) ) = ( seq 1 ( + , H ) ` k ) ) ) -> ( ph -> ( U_ n e. ( 1 ... ( k + 1 ) ) ( F ` n ) e. dom vol /\ ( vol* ` ( E i^i U_ n e. ( 1 ... ( k + 1 ) ) ( F ` n ) ) ) = ( seq 1 ( + , H ) ` ( k + 1 ) ) ) ) ) ) |
| 173 | 41 50 59 50 82 172 | nnind | |- ( k e. NN -> ( ph -> ( U_ n e. ( 1 ... k ) ( F ` n ) e. dom vol /\ ( vol* ` ( E i^i U_ n e. ( 1 ... k ) ( F ` n ) ) ) = ( seq 1 ( + , H ) ` k ) ) ) ) |
| 174 | 173 | impcom | |- ( ( ph /\ k e. NN ) -> ( U_ n e. ( 1 ... k ) ( F ` n ) e. dom vol /\ ( vol* ` ( E i^i U_ n e. ( 1 ... k ) ( F ` n ) ) ) = ( seq 1 ( + , H ) ` k ) ) ) |
| 175 | 174 | simprd | |- ( ( ph /\ k e. NN ) -> ( vol* ` ( E i^i U_ n e. ( 1 ... k ) ( F ` n ) ) ) = ( seq 1 ( + , H ) ` k ) ) |
| 176 | 175 | eqcomd | |- ( ( ph /\ k e. NN ) -> ( seq 1 ( + , H ) ` k ) = ( vol* ` ( E i^i U_ n e. ( 1 ... k ) ( F ` n ) ) ) ) |
| 177 | 176 | oveq1d | |- ( ( ph /\ k e. NN ) -> ( ( seq 1 ( + , H ) ` k ) + ( vol* ` ( E \ U. ran F ) ) ) = ( ( vol* ` ( E i^i U_ n e. ( 1 ... k ) ( F ` n ) ) ) + ( vol* ` ( E \ U. ran F ) ) ) ) |
| 178 | 174 | simpld | |- ( ( ph /\ k e. NN ) -> U_ n e. ( 1 ... k ) ( F ` n ) e. dom vol ) |
| 179 | mblsplit | |- ( ( U_ n e. ( 1 ... k ) ( F ` n ) e. dom vol /\ E C_ RR /\ ( vol* ` E ) e. RR ) -> ( vol* ` E ) = ( ( vol* ` ( E i^i U_ n e. ( 1 ... k ) ( F ` n ) ) ) + ( vol* ` ( E \ U_ n e. ( 1 ... k ) ( F ` n ) ) ) ) ) |
|
| 180 | 178 28 7 179 | syl3anc | |- ( ( ph /\ k e. NN ) -> ( vol* ` E ) = ( ( vol* ` ( E i^i U_ n e. ( 1 ... k ) ( F ` n ) ) ) + ( vol* ` ( E \ U_ n e. ( 1 ... k ) ( F ` n ) ) ) ) ) |
| 181 | 32 177 180 | 3brtr4d | |- ( ( ph /\ k e. NN ) -> ( ( seq 1 ( + , H ) ` k ) + ( vol* ` ( E \ U. ran F ) ) ) <_ ( vol* ` E ) ) |