This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Property of a disjoint collection: if B ( X ) = C and B ( Y ) = D , and X =/= Y , then C and D are disjoint. (Contributed by Mario Carneiro, 14-Nov-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | disji.1 | ⊢ ( 𝑥 = 𝑋 → 𝐵 = 𝐶 ) | |
| disji.2 | ⊢ ( 𝑥 = 𝑌 → 𝐵 = 𝐷 ) | ||
| Assertion | disji2 | ⊢ ( ( Disj 𝑥 ∈ 𝐴 𝐵 ∧ ( 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴 ) ∧ 𝑋 ≠ 𝑌 ) → ( 𝐶 ∩ 𝐷 ) = ∅ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | disji.1 | ⊢ ( 𝑥 = 𝑋 → 𝐵 = 𝐶 ) | |
| 2 | disji.2 | ⊢ ( 𝑥 = 𝑌 → 𝐵 = 𝐷 ) | |
| 3 | df-ne | ⊢ ( 𝑋 ≠ 𝑌 ↔ ¬ 𝑋 = 𝑌 ) | |
| 4 | disjors | ⊢ ( Disj 𝑥 ∈ 𝐴 𝐵 ↔ ∀ 𝑦 ∈ 𝐴 ∀ 𝑧 ∈ 𝐴 ( 𝑦 = 𝑧 ∨ ( ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ∩ ⦋ 𝑧 / 𝑥 ⦌ 𝐵 ) = ∅ ) ) | |
| 5 | eqeq1 | ⊢ ( 𝑦 = 𝑋 → ( 𝑦 = 𝑧 ↔ 𝑋 = 𝑧 ) ) | |
| 6 | nfcv | ⊢ Ⅎ 𝑥 𝑋 | |
| 7 | nfcv | ⊢ Ⅎ 𝑥 𝐶 | |
| 8 | 6 7 1 | csbhypf | ⊢ ( 𝑦 = 𝑋 → ⦋ 𝑦 / 𝑥 ⦌ 𝐵 = 𝐶 ) |
| 9 | 8 | ineq1d | ⊢ ( 𝑦 = 𝑋 → ( ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ∩ ⦋ 𝑧 / 𝑥 ⦌ 𝐵 ) = ( 𝐶 ∩ ⦋ 𝑧 / 𝑥 ⦌ 𝐵 ) ) |
| 10 | 9 | eqeq1d | ⊢ ( 𝑦 = 𝑋 → ( ( ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ∩ ⦋ 𝑧 / 𝑥 ⦌ 𝐵 ) = ∅ ↔ ( 𝐶 ∩ ⦋ 𝑧 / 𝑥 ⦌ 𝐵 ) = ∅ ) ) |
| 11 | 5 10 | orbi12d | ⊢ ( 𝑦 = 𝑋 → ( ( 𝑦 = 𝑧 ∨ ( ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ∩ ⦋ 𝑧 / 𝑥 ⦌ 𝐵 ) = ∅ ) ↔ ( 𝑋 = 𝑧 ∨ ( 𝐶 ∩ ⦋ 𝑧 / 𝑥 ⦌ 𝐵 ) = ∅ ) ) ) |
| 12 | eqeq2 | ⊢ ( 𝑧 = 𝑌 → ( 𝑋 = 𝑧 ↔ 𝑋 = 𝑌 ) ) | |
| 13 | nfcv | ⊢ Ⅎ 𝑥 𝑌 | |
| 14 | nfcv | ⊢ Ⅎ 𝑥 𝐷 | |
| 15 | 13 14 2 | csbhypf | ⊢ ( 𝑧 = 𝑌 → ⦋ 𝑧 / 𝑥 ⦌ 𝐵 = 𝐷 ) |
| 16 | 15 | ineq2d | ⊢ ( 𝑧 = 𝑌 → ( 𝐶 ∩ ⦋ 𝑧 / 𝑥 ⦌ 𝐵 ) = ( 𝐶 ∩ 𝐷 ) ) |
| 17 | 16 | eqeq1d | ⊢ ( 𝑧 = 𝑌 → ( ( 𝐶 ∩ ⦋ 𝑧 / 𝑥 ⦌ 𝐵 ) = ∅ ↔ ( 𝐶 ∩ 𝐷 ) = ∅ ) ) |
| 18 | 12 17 | orbi12d | ⊢ ( 𝑧 = 𝑌 → ( ( 𝑋 = 𝑧 ∨ ( 𝐶 ∩ ⦋ 𝑧 / 𝑥 ⦌ 𝐵 ) = ∅ ) ↔ ( 𝑋 = 𝑌 ∨ ( 𝐶 ∩ 𝐷 ) = ∅ ) ) ) |
| 19 | 11 18 | rspc2v | ⊢ ( ( 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴 ) → ( ∀ 𝑦 ∈ 𝐴 ∀ 𝑧 ∈ 𝐴 ( 𝑦 = 𝑧 ∨ ( ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ∩ ⦋ 𝑧 / 𝑥 ⦌ 𝐵 ) = ∅ ) → ( 𝑋 = 𝑌 ∨ ( 𝐶 ∩ 𝐷 ) = ∅ ) ) ) |
| 20 | 4 19 | biimtrid | ⊢ ( ( 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴 ) → ( Disj 𝑥 ∈ 𝐴 𝐵 → ( 𝑋 = 𝑌 ∨ ( 𝐶 ∩ 𝐷 ) = ∅ ) ) ) |
| 21 | 20 | impcom | ⊢ ( ( Disj 𝑥 ∈ 𝐴 𝐵 ∧ ( 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴 ) ) → ( 𝑋 = 𝑌 ∨ ( 𝐶 ∩ 𝐷 ) = ∅ ) ) |
| 22 | 21 | ord | ⊢ ( ( Disj 𝑥 ∈ 𝐴 𝐵 ∧ ( 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴 ) ) → ( ¬ 𝑋 = 𝑌 → ( 𝐶 ∩ 𝐷 ) = ∅ ) ) |
| 23 | 3 22 | biimtrid | ⊢ ( ( Disj 𝑥 ∈ 𝐴 𝐵 ∧ ( 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴 ) ) → ( 𝑋 ≠ 𝑌 → ( 𝐶 ∩ 𝐷 ) = ∅ ) ) |
| 24 | 23 | 3impia | ⊢ ( ( Disj 𝑥 ∈ 𝐴 𝐵 ∧ ( 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴 ) ∧ 𝑋 ≠ 𝑌 ) → ( 𝐶 ∩ 𝐷 ) = ∅ ) |