This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for tsmsxp . (Contributed by Mario Carneiro, 21-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | tsmsxp.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| tsmsxp.g | ⊢ ( 𝜑 → 𝐺 ∈ CMnd ) | ||
| tsmsxp.2 | ⊢ ( 𝜑 → 𝐺 ∈ TopGrp ) | ||
| tsmsxp.a | ⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) | ||
| tsmsxp.c | ⊢ ( 𝜑 → 𝐶 ∈ 𝑊 ) | ||
| tsmsxp.f | ⊢ ( 𝜑 → 𝐹 : ( 𝐴 × 𝐶 ) ⟶ 𝐵 ) | ||
| tsmsxp.h | ⊢ ( 𝜑 → 𝐻 : 𝐴 ⟶ 𝐵 ) | ||
| tsmsxp.1 | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝐴 ) → ( 𝐻 ‘ 𝑗 ) ∈ ( 𝐺 tsums ( 𝑘 ∈ 𝐶 ↦ ( 𝑗 𝐹 𝑘 ) ) ) ) | ||
| tsmsxp.j | ⊢ 𝐽 = ( TopOpen ‘ 𝐺 ) | ||
| tsmsxp.z | ⊢ 0 = ( 0g ‘ 𝐺 ) | ||
| tsmsxp.p | ⊢ + = ( +g ‘ 𝐺 ) | ||
| tsmsxp.m | ⊢ − = ( -g ‘ 𝐺 ) | ||
| tsmsxp.l | ⊢ ( 𝜑 → 𝐿 ∈ 𝐽 ) | ||
| tsmsxp.3 | ⊢ ( 𝜑 → 0 ∈ 𝐿 ) | ||
| tsmsxp.k | ⊢ ( 𝜑 → 𝐾 ∈ ( 𝒫 𝐴 ∩ Fin ) ) | ||
| tsmsxp.ks | ⊢ ( 𝜑 → dom 𝐷 ⊆ 𝐾 ) | ||
| tsmsxp.d | ⊢ ( 𝜑 → 𝐷 ∈ ( 𝒫 ( 𝐴 × 𝐶 ) ∩ Fin ) ) | ||
| Assertion | tsmsxplem1 | ⊢ ( 𝜑 → ∃ 𝑛 ∈ ( 𝒫 𝐶 ∩ Fin ) ( ran 𝐷 ⊆ 𝑛 ∧ ∀ 𝑥 ∈ 𝐾 ( ( 𝐻 ‘ 𝑥 ) − ( 𝐺 Σg ( 𝐹 ↾ ( { 𝑥 } × 𝑛 ) ) ) ) ∈ 𝐿 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tsmsxp.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| 2 | tsmsxp.g | ⊢ ( 𝜑 → 𝐺 ∈ CMnd ) | |
| 3 | tsmsxp.2 | ⊢ ( 𝜑 → 𝐺 ∈ TopGrp ) | |
| 4 | tsmsxp.a | ⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) | |
| 5 | tsmsxp.c | ⊢ ( 𝜑 → 𝐶 ∈ 𝑊 ) | |
| 6 | tsmsxp.f | ⊢ ( 𝜑 → 𝐹 : ( 𝐴 × 𝐶 ) ⟶ 𝐵 ) | |
| 7 | tsmsxp.h | ⊢ ( 𝜑 → 𝐻 : 𝐴 ⟶ 𝐵 ) | |
| 8 | tsmsxp.1 | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝐴 ) → ( 𝐻 ‘ 𝑗 ) ∈ ( 𝐺 tsums ( 𝑘 ∈ 𝐶 ↦ ( 𝑗 𝐹 𝑘 ) ) ) ) | |
| 9 | tsmsxp.j | ⊢ 𝐽 = ( TopOpen ‘ 𝐺 ) | |
| 10 | tsmsxp.z | ⊢ 0 = ( 0g ‘ 𝐺 ) | |
| 11 | tsmsxp.p | ⊢ + = ( +g ‘ 𝐺 ) | |
| 12 | tsmsxp.m | ⊢ − = ( -g ‘ 𝐺 ) | |
| 13 | tsmsxp.l | ⊢ ( 𝜑 → 𝐿 ∈ 𝐽 ) | |
| 14 | tsmsxp.3 | ⊢ ( 𝜑 → 0 ∈ 𝐿 ) | |
| 15 | tsmsxp.k | ⊢ ( 𝜑 → 𝐾 ∈ ( 𝒫 𝐴 ∩ Fin ) ) | |
| 16 | tsmsxp.ks | ⊢ ( 𝜑 → dom 𝐷 ⊆ 𝐾 ) | |
| 17 | tsmsxp.d | ⊢ ( 𝜑 → 𝐷 ∈ ( 𝒫 ( 𝐴 × 𝐶 ) ∩ Fin ) ) | |
| 18 | 15 | elin2d | ⊢ ( 𝜑 → 𝐾 ∈ Fin ) |
| 19 | elfpw | ⊢ ( 𝐾 ∈ ( 𝒫 𝐴 ∩ Fin ) ↔ ( 𝐾 ⊆ 𝐴 ∧ 𝐾 ∈ Fin ) ) | |
| 20 | 19 | simplbi | ⊢ ( 𝐾 ∈ ( 𝒫 𝐴 ∩ Fin ) → 𝐾 ⊆ 𝐴 ) |
| 21 | 15 20 | syl | ⊢ ( 𝜑 → 𝐾 ⊆ 𝐴 ) |
| 22 | 21 | sselda | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝐾 ) → 𝑗 ∈ 𝐴 ) |
| 23 | eqid | ⊢ ( 𝒫 𝐶 ∩ Fin ) = ( 𝒫 𝐶 ∩ Fin ) | |
| 24 | 2 | adantr | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝐴 ) → 𝐺 ∈ CMnd ) |
| 25 | tgptps | ⊢ ( 𝐺 ∈ TopGrp → 𝐺 ∈ TopSp ) | |
| 26 | 3 25 | syl | ⊢ ( 𝜑 → 𝐺 ∈ TopSp ) |
| 27 | 26 | adantr | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝐴 ) → 𝐺 ∈ TopSp ) |
| 28 | 5 | adantr | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝐴 ) → 𝐶 ∈ 𝑊 ) |
| 29 | fovcdm | ⊢ ( ( 𝐹 : ( 𝐴 × 𝐶 ) ⟶ 𝐵 ∧ 𝑗 ∈ 𝐴 ∧ 𝑘 ∈ 𝐶 ) → ( 𝑗 𝐹 𝑘 ) ∈ 𝐵 ) | |
| 30 | 6 29 | syl3an1 | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝐴 ∧ 𝑘 ∈ 𝐶 ) → ( 𝑗 𝐹 𝑘 ) ∈ 𝐵 ) |
| 31 | 30 | 3expa | ⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝐴 ) ∧ 𝑘 ∈ 𝐶 ) → ( 𝑗 𝐹 𝑘 ) ∈ 𝐵 ) |
| 32 | 31 | fmpttd | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝐴 ) → ( 𝑘 ∈ 𝐶 ↦ ( 𝑗 𝐹 𝑘 ) ) : 𝐶 ⟶ 𝐵 ) |
| 33 | df-ima | ⊢ ( ( 𝑔 ∈ 𝐵 ↦ ( ( 𝐻 ‘ 𝑗 ) − 𝑔 ) ) “ 𝐿 ) = ran ( ( 𝑔 ∈ 𝐵 ↦ ( ( 𝐻 ‘ 𝑗 ) − 𝑔 ) ) ↾ 𝐿 ) | |
| 34 | 9 1 | tgptopon | ⊢ ( 𝐺 ∈ TopGrp → 𝐽 ∈ ( TopOn ‘ 𝐵 ) ) |
| 35 | 3 34 | syl | ⊢ ( 𝜑 → 𝐽 ∈ ( TopOn ‘ 𝐵 ) ) |
| 36 | toponss | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝐵 ) ∧ 𝐿 ∈ 𝐽 ) → 𝐿 ⊆ 𝐵 ) | |
| 37 | 35 13 36 | syl2anc | ⊢ ( 𝜑 → 𝐿 ⊆ 𝐵 ) |
| 38 | 37 | adantr | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝐴 ) → 𝐿 ⊆ 𝐵 ) |
| 39 | 38 | resmptd | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝐴 ) → ( ( 𝑔 ∈ 𝐵 ↦ ( ( 𝐻 ‘ 𝑗 ) − 𝑔 ) ) ↾ 𝐿 ) = ( 𝑔 ∈ 𝐿 ↦ ( ( 𝐻 ‘ 𝑗 ) − 𝑔 ) ) ) |
| 40 | 39 | rneqd | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝐴 ) → ran ( ( 𝑔 ∈ 𝐵 ↦ ( ( 𝐻 ‘ 𝑗 ) − 𝑔 ) ) ↾ 𝐿 ) = ran ( 𝑔 ∈ 𝐿 ↦ ( ( 𝐻 ‘ 𝑗 ) − 𝑔 ) ) ) |
| 41 | 33 40 | eqtrid | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝐴 ) → ( ( 𝑔 ∈ 𝐵 ↦ ( ( 𝐻 ‘ 𝑗 ) − 𝑔 ) ) “ 𝐿 ) = ran ( 𝑔 ∈ 𝐿 ↦ ( ( 𝐻 ‘ 𝑗 ) − 𝑔 ) ) ) |
| 42 | 7 | ffvelcdmda | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝐴 ) → ( 𝐻 ‘ 𝑗 ) ∈ 𝐵 ) |
| 43 | eqid | ⊢ ( invg ‘ 𝐺 ) = ( invg ‘ 𝐺 ) | |
| 44 | 1 11 43 12 | grpsubval | ⊢ ( ( ( 𝐻 ‘ 𝑗 ) ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ) → ( ( 𝐻 ‘ 𝑗 ) − 𝑔 ) = ( ( 𝐻 ‘ 𝑗 ) + ( ( invg ‘ 𝐺 ) ‘ 𝑔 ) ) ) |
| 45 | 42 44 | sylan | ⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝐴 ) ∧ 𝑔 ∈ 𝐵 ) → ( ( 𝐻 ‘ 𝑗 ) − 𝑔 ) = ( ( 𝐻 ‘ 𝑗 ) + ( ( invg ‘ 𝐺 ) ‘ 𝑔 ) ) ) |
| 46 | 45 | mpteq2dva | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝐴 ) → ( 𝑔 ∈ 𝐵 ↦ ( ( 𝐻 ‘ 𝑗 ) − 𝑔 ) ) = ( 𝑔 ∈ 𝐵 ↦ ( ( 𝐻 ‘ 𝑗 ) + ( ( invg ‘ 𝐺 ) ‘ 𝑔 ) ) ) ) |
| 47 | tgpgrp | ⊢ ( 𝐺 ∈ TopGrp → 𝐺 ∈ Grp ) | |
| 48 | 3 47 | syl | ⊢ ( 𝜑 → 𝐺 ∈ Grp ) |
| 49 | 48 | adantr | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝐴 ) → 𝐺 ∈ Grp ) |
| 50 | 1 43 | grpinvcl | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑔 ∈ 𝐵 ) → ( ( invg ‘ 𝐺 ) ‘ 𝑔 ) ∈ 𝐵 ) |
| 51 | 49 50 | sylan | ⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝐴 ) ∧ 𝑔 ∈ 𝐵 ) → ( ( invg ‘ 𝐺 ) ‘ 𝑔 ) ∈ 𝐵 ) |
| 52 | 1 43 | grpinvf | ⊢ ( 𝐺 ∈ Grp → ( invg ‘ 𝐺 ) : 𝐵 ⟶ 𝐵 ) |
| 53 | 49 52 | syl | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝐴 ) → ( invg ‘ 𝐺 ) : 𝐵 ⟶ 𝐵 ) |
| 54 | 53 | feqmptd | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝐴 ) → ( invg ‘ 𝐺 ) = ( 𝑔 ∈ 𝐵 ↦ ( ( invg ‘ 𝐺 ) ‘ 𝑔 ) ) ) |
| 55 | eqidd | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝐴 ) → ( 𝑦 ∈ 𝐵 ↦ ( ( 𝐻 ‘ 𝑗 ) + 𝑦 ) ) = ( 𝑦 ∈ 𝐵 ↦ ( ( 𝐻 ‘ 𝑗 ) + 𝑦 ) ) ) | |
| 56 | oveq2 | ⊢ ( 𝑦 = ( ( invg ‘ 𝐺 ) ‘ 𝑔 ) → ( ( 𝐻 ‘ 𝑗 ) + 𝑦 ) = ( ( 𝐻 ‘ 𝑗 ) + ( ( invg ‘ 𝐺 ) ‘ 𝑔 ) ) ) | |
| 57 | 51 54 55 56 | fmptco | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝐴 ) → ( ( 𝑦 ∈ 𝐵 ↦ ( ( 𝐻 ‘ 𝑗 ) + 𝑦 ) ) ∘ ( invg ‘ 𝐺 ) ) = ( 𝑔 ∈ 𝐵 ↦ ( ( 𝐻 ‘ 𝑗 ) + ( ( invg ‘ 𝐺 ) ‘ 𝑔 ) ) ) ) |
| 58 | 46 57 | eqtr4d | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝐴 ) → ( 𝑔 ∈ 𝐵 ↦ ( ( 𝐻 ‘ 𝑗 ) − 𝑔 ) ) = ( ( 𝑦 ∈ 𝐵 ↦ ( ( 𝐻 ‘ 𝑗 ) + 𝑦 ) ) ∘ ( invg ‘ 𝐺 ) ) ) |
| 59 | 3 | adantr | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝐴 ) → 𝐺 ∈ TopGrp ) |
| 60 | 9 43 | grpinvhmeo | ⊢ ( 𝐺 ∈ TopGrp → ( invg ‘ 𝐺 ) ∈ ( 𝐽 Homeo 𝐽 ) ) |
| 61 | 59 60 | syl | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝐴 ) → ( invg ‘ 𝐺 ) ∈ ( 𝐽 Homeo 𝐽 ) ) |
| 62 | eqid | ⊢ ( 𝑦 ∈ 𝐵 ↦ ( ( 𝐻 ‘ 𝑗 ) + 𝑦 ) ) = ( 𝑦 ∈ 𝐵 ↦ ( ( 𝐻 ‘ 𝑗 ) + 𝑦 ) ) | |
| 63 | 62 1 11 9 | tgplacthmeo | ⊢ ( ( 𝐺 ∈ TopGrp ∧ ( 𝐻 ‘ 𝑗 ) ∈ 𝐵 ) → ( 𝑦 ∈ 𝐵 ↦ ( ( 𝐻 ‘ 𝑗 ) + 𝑦 ) ) ∈ ( 𝐽 Homeo 𝐽 ) ) |
| 64 | 59 42 63 | syl2anc | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝐴 ) → ( 𝑦 ∈ 𝐵 ↦ ( ( 𝐻 ‘ 𝑗 ) + 𝑦 ) ) ∈ ( 𝐽 Homeo 𝐽 ) ) |
| 65 | hmeoco | ⊢ ( ( ( invg ‘ 𝐺 ) ∈ ( 𝐽 Homeo 𝐽 ) ∧ ( 𝑦 ∈ 𝐵 ↦ ( ( 𝐻 ‘ 𝑗 ) + 𝑦 ) ) ∈ ( 𝐽 Homeo 𝐽 ) ) → ( ( 𝑦 ∈ 𝐵 ↦ ( ( 𝐻 ‘ 𝑗 ) + 𝑦 ) ) ∘ ( invg ‘ 𝐺 ) ) ∈ ( 𝐽 Homeo 𝐽 ) ) | |
| 66 | 61 64 65 | syl2anc | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝐴 ) → ( ( 𝑦 ∈ 𝐵 ↦ ( ( 𝐻 ‘ 𝑗 ) + 𝑦 ) ) ∘ ( invg ‘ 𝐺 ) ) ∈ ( 𝐽 Homeo 𝐽 ) ) |
| 67 | 58 66 | eqeltrd | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝐴 ) → ( 𝑔 ∈ 𝐵 ↦ ( ( 𝐻 ‘ 𝑗 ) − 𝑔 ) ) ∈ ( 𝐽 Homeo 𝐽 ) ) |
| 68 | 13 | adantr | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝐴 ) → 𝐿 ∈ 𝐽 ) |
| 69 | hmeoima | ⊢ ( ( ( 𝑔 ∈ 𝐵 ↦ ( ( 𝐻 ‘ 𝑗 ) − 𝑔 ) ) ∈ ( 𝐽 Homeo 𝐽 ) ∧ 𝐿 ∈ 𝐽 ) → ( ( 𝑔 ∈ 𝐵 ↦ ( ( 𝐻 ‘ 𝑗 ) − 𝑔 ) ) “ 𝐿 ) ∈ 𝐽 ) | |
| 70 | 67 68 69 | syl2anc | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝐴 ) → ( ( 𝑔 ∈ 𝐵 ↦ ( ( 𝐻 ‘ 𝑗 ) − 𝑔 ) ) “ 𝐿 ) ∈ 𝐽 ) |
| 71 | 41 70 | eqeltrrd | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝐴 ) → ran ( 𝑔 ∈ 𝐿 ↦ ( ( 𝐻 ‘ 𝑗 ) − 𝑔 ) ) ∈ 𝐽 ) |
| 72 | 1 10 12 | grpsubid1 | ⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝐻 ‘ 𝑗 ) ∈ 𝐵 ) → ( ( 𝐻 ‘ 𝑗 ) − 0 ) = ( 𝐻 ‘ 𝑗 ) ) |
| 73 | 49 42 72 | syl2anc | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝐴 ) → ( ( 𝐻 ‘ 𝑗 ) − 0 ) = ( 𝐻 ‘ 𝑗 ) ) |
| 74 | 14 | adantr | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝐴 ) → 0 ∈ 𝐿 ) |
| 75 | ovex | ⊢ ( ( 𝐻 ‘ 𝑗 ) − 0 ) ∈ V | |
| 76 | eqid | ⊢ ( 𝑔 ∈ 𝐿 ↦ ( ( 𝐻 ‘ 𝑗 ) − 𝑔 ) ) = ( 𝑔 ∈ 𝐿 ↦ ( ( 𝐻 ‘ 𝑗 ) − 𝑔 ) ) | |
| 77 | oveq2 | ⊢ ( 𝑔 = 0 → ( ( 𝐻 ‘ 𝑗 ) − 𝑔 ) = ( ( 𝐻 ‘ 𝑗 ) − 0 ) ) | |
| 78 | 76 77 | elrnmpt1s | ⊢ ( ( 0 ∈ 𝐿 ∧ ( ( 𝐻 ‘ 𝑗 ) − 0 ) ∈ V ) → ( ( 𝐻 ‘ 𝑗 ) − 0 ) ∈ ran ( 𝑔 ∈ 𝐿 ↦ ( ( 𝐻 ‘ 𝑗 ) − 𝑔 ) ) ) |
| 79 | 74 75 78 | sylancl | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝐴 ) → ( ( 𝐻 ‘ 𝑗 ) − 0 ) ∈ ran ( 𝑔 ∈ 𝐿 ↦ ( ( 𝐻 ‘ 𝑗 ) − 𝑔 ) ) ) |
| 80 | 73 79 | eqeltrrd | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝐴 ) → ( 𝐻 ‘ 𝑗 ) ∈ ran ( 𝑔 ∈ 𝐿 ↦ ( ( 𝐻 ‘ 𝑗 ) − 𝑔 ) ) ) |
| 81 | 1 9 23 24 27 28 32 8 71 80 | tsmsi | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝐴 ) → ∃ 𝑦 ∈ ( 𝒫 𝐶 ∩ Fin ) ∀ 𝑧 ∈ ( 𝒫 𝐶 ∩ Fin ) ( 𝑦 ⊆ 𝑧 → ( 𝐺 Σg ( ( 𝑘 ∈ 𝐶 ↦ ( 𝑗 𝐹 𝑘 ) ) ↾ 𝑧 ) ) ∈ ran ( 𝑔 ∈ 𝐿 ↦ ( ( 𝐻 ‘ 𝑗 ) − 𝑔 ) ) ) ) |
| 82 | 22 81 | syldan | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝐾 ) → ∃ 𝑦 ∈ ( 𝒫 𝐶 ∩ Fin ) ∀ 𝑧 ∈ ( 𝒫 𝐶 ∩ Fin ) ( 𝑦 ⊆ 𝑧 → ( 𝐺 Σg ( ( 𝑘 ∈ 𝐶 ↦ ( 𝑗 𝐹 𝑘 ) ) ↾ 𝑧 ) ) ∈ ran ( 𝑔 ∈ 𝐿 ↦ ( ( 𝐻 ‘ 𝑗 ) − 𝑔 ) ) ) ) |
| 83 | 82 | ralrimiva | ⊢ ( 𝜑 → ∀ 𝑗 ∈ 𝐾 ∃ 𝑦 ∈ ( 𝒫 𝐶 ∩ Fin ) ∀ 𝑧 ∈ ( 𝒫 𝐶 ∩ Fin ) ( 𝑦 ⊆ 𝑧 → ( 𝐺 Σg ( ( 𝑘 ∈ 𝐶 ↦ ( 𝑗 𝐹 𝑘 ) ) ↾ 𝑧 ) ) ∈ ran ( 𝑔 ∈ 𝐿 ↦ ( ( 𝐻 ‘ 𝑗 ) − 𝑔 ) ) ) ) |
| 84 | sseq1 | ⊢ ( 𝑦 = ( 𝑓 ‘ 𝑗 ) → ( 𝑦 ⊆ 𝑧 ↔ ( 𝑓 ‘ 𝑗 ) ⊆ 𝑧 ) ) | |
| 85 | 84 | imbi1d | ⊢ ( 𝑦 = ( 𝑓 ‘ 𝑗 ) → ( ( 𝑦 ⊆ 𝑧 → ( 𝐺 Σg ( ( 𝑘 ∈ 𝐶 ↦ ( 𝑗 𝐹 𝑘 ) ) ↾ 𝑧 ) ) ∈ ran ( 𝑔 ∈ 𝐿 ↦ ( ( 𝐻 ‘ 𝑗 ) − 𝑔 ) ) ) ↔ ( ( 𝑓 ‘ 𝑗 ) ⊆ 𝑧 → ( 𝐺 Σg ( ( 𝑘 ∈ 𝐶 ↦ ( 𝑗 𝐹 𝑘 ) ) ↾ 𝑧 ) ) ∈ ran ( 𝑔 ∈ 𝐿 ↦ ( ( 𝐻 ‘ 𝑗 ) − 𝑔 ) ) ) ) ) |
| 86 | 85 | ralbidv | ⊢ ( 𝑦 = ( 𝑓 ‘ 𝑗 ) → ( ∀ 𝑧 ∈ ( 𝒫 𝐶 ∩ Fin ) ( 𝑦 ⊆ 𝑧 → ( 𝐺 Σg ( ( 𝑘 ∈ 𝐶 ↦ ( 𝑗 𝐹 𝑘 ) ) ↾ 𝑧 ) ) ∈ ran ( 𝑔 ∈ 𝐿 ↦ ( ( 𝐻 ‘ 𝑗 ) − 𝑔 ) ) ) ↔ ∀ 𝑧 ∈ ( 𝒫 𝐶 ∩ Fin ) ( ( 𝑓 ‘ 𝑗 ) ⊆ 𝑧 → ( 𝐺 Σg ( ( 𝑘 ∈ 𝐶 ↦ ( 𝑗 𝐹 𝑘 ) ) ↾ 𝑧 ) ) ∈ ran ( 𝑔 ∈ 𝐿 ↦ ( ( 𝐻 ‘ 𝑗 ) − 𝑔 ) ) ) ) ) |
| 87 | 86 | ac6sfi | ⊢ ( ( 𝐾 ∈ Fin ∧ ∀ 𝑗 ∈ 𝐾 ∃ 𝑦 ∈ ( 𝒫 𝐶 ∩ Fin ) ∀ 𝑧 ∈ ( 𝒫 𝐶 ∩ Fin ) ( 𝑦 ⊆ 𝑧 → ( 𝐺 Σg ( ( 𝑘 ∈ 𝐶 ↦ ( 𝑗 𝐹 𝑘 ) ) ↾ 𝑧 ) ) ∈ ran ( 𝑔 ∈ 𝐿 ↦ ( ( 𝐻 ‘ 𝑗 ) − 𝑔 ) ) ) ) → ∃ 𝑓 ( 𝑓 : 𝐾 ⟶ ( 𝒫 𝐶 ∩ Fin ) ∧ ∀ 𝑗 ∈ 𝐾 ∀ 𝑧 ∈ ( 𝒫 𝐶 ∩ Fin ) ( ( 𝑓 ‘ 𝑗 ) ⊆ 𝑧 → ( 𝐺 Σg ( ( 𝑘 ∈ 𝐶 ↦ ( 𝑗 𝐹 𝑘 ) ) ↾ 𝑧 ) ) ∈ ran ( 𝑔 ∈ 𝐿 ↦ ( ( 𝐻 ‘ 𝑗 ) − 𝑔 ) ) ) ) ) |
| 88 | 18 83 87 | syl2anc | ⊢ ( 𝜑 → ∃ 𝑓 ( 𝑓 : 𝐾 ⟶ ( 𝒫 𝐶 ∩ Fin ) ∧ ∀ 𝑗 ∈ 𝐾 ∀ 𝑧 ∈ ( 𝒫 𝐶 ∩ Fin ) ( ( 𝑓 ‘ 𝑗 ) ⊆ 𝑧 → ( 𝐺 Σg ( ( 𝑘 ∈ 𝐶 ↦ ( 𝑗 𝐹 𝑘 ) ) ↾ 𝑧 ) ) ∈ ran ( 𝑔 ∈ 𝐿 ↦ ( ( 𝐻 ‘ 𝑗 ) − 𝑔 ) ) ) ) ) |
| 89 | frn | ⊢ ( 𝑓 : 𝐾 ⟶ ( 𝒫 𝐶 ∩ Fin ) → ran 𝑓 ⊆ ( 𝒫 𝐶 ∩ Fin ) ) | |
| 90 | 89 | adantl | ⊢ ( ( 𝜑 ∧ 𝑓 : 𝐾 ⟶ ( 𝒫 𝐶 ∩ Fin ) ) → ran 𝑓 ⊆ ( 𝒫 𝐶 ∩ Fin ) ) |
| 91 | inss1 | ⊢ ( 𝒫 𝐶 ∩ Fin ) ⊆ 𝒫 𝐶 | |
| 92 | 90 91 | sstrdi | ⊢ ( ( 𝜑 ∧ 𝑓 : 𝐾 ⟶ ( 𝒫 𝐶 ∩ Fin ) ) → ran 𝑓 ⊆ 𝒫 𝐶 ) |
| 93 | sspwuni | ⊢ ( ran 𝑓 ⊆ 𝒫 𝐶 ↔ ∪ ran 𝑓 ⊆ 𝐶 ) | |
| 94 | 92 93 | sylib | ⊢ ( ( 𝜑 ∧ 𝑓 : 𝐾 ⟶ ( 𝒫 𝐶 ∩ Fin ) ) → ∪ ran 𝑓 ⊆ 𝐶 ) |
| 95 | elfpw | ⊢ ( 𝐷 ∈ ( 𝒫 ( 𝐴 × 𝐶 ) ∩ Fin ) ↔ ( 𝐷 ⊆ ( 𝐴 × 𝐶 ) ∧ 𝐷 ∈ Fin ) ) | |
| 96 | 95 | simplbi | ⊢ ( 𝐷 ∈ ( 𝒫 ( 𝐴 × 𝐶 ) ∩ Fin ) → 𝐷 ⊆ ( 𝐴 × 𝐶 ) ) |
| 97 | rnss | ⊢ ( 𝐷 ⊆ ( 𝐴 × 𝐶 ) → ran 𝐷 ⊆ ran ( 𝐴 × 𝐶 ) ) | |
| 98 | 17 96 97 | 3syl | ⊢ ( 𝜑 → ran 𝐷 ⊆ ran ( 𝐴 × 𝐶 ) ) |
| 99 | rnxpss | ⊢ ran ( 𝐴 × 𝐶 ) ⊆ 𝐶 | |
| 100 | 98 99 | sstrdi | ⊢ ( 𝜑 → ran 𝐷 ⊆ 𝐶 ) |
| 101 | 100 | adantr | ⊢ ( ( 𝜑 ∧ 𝑓 : 𝐾 ⟶ ( 𝒫 𝐶 ∩ Fin ) ) → ran 𝐷 ⊆ 𝐶 ) |
| 102 | 94 101 | unssd | ⊢ ( ( 𝜑 ∧ 𝑓 : 𝐾 ⟶ ( 𝒫 𝐶 ∩ Fin ) ) → ( ∪ ran 𝑓 ∪ ran 𝐷 ) ⊆ 𝐶 ) |
| 103 | 18 | adantr | ⊢ ( ( 𝜑 ∧ 𝑓 : 𝐾 ⟶ ( 𝒫 𝐶 ∩ Fin ) ) → 𝐾 ∈ Fin ) |
| 104 | ffn | ⊢ ( 𝑓 : 𝐾 ⟶ ( 𝒫 𝐶 ∩ Fin ) → 𝑓 Fn 𝐾 ) | |
| 105 | 104 | adantl | ⊢ ( ( 𝜑 ∧ 𝑓 : 𝐾 ⟶ ( 𝒫 𝐶 ∩ Fin ) ) → 𝑓 Fn 𝐾 ) |
| 106 | dffn4 | ⊢ ( 𝑓 Fn 𝐾 ↔ 𝑓 : 𝐾 –onto→ ran 𝑓 ) | |
| 107 | 105 106 | sylib | ⊢ ( ( 𝜑 ∧ 𝑓 : 𝐾 ⟶ ( 𝒫 𝐶 ∩ Fin ) ) → 𝑓 : 𝐾 –onto→ ran 𝑓 ) |
| 108 | fofi | ⊢ ( ( 𝐾 ∈ Fin ∧ 𝑓 : 𝐾 –onto→ ran 𝑓 ) → ran 𝑓 ∈ Fin ) | |
| 109 | 103 107 108 | syl2anc | ⊢ ( ( 𝜑 ∧ 𝑓 : 𝐾 ⟶ ( 𝒫 𝐶 ∩ Fin ) ) → ran 𝑓 ∈ Fin ) |
| 110 | inss2 | ⊢ ( 𝒫 𝐶 ∩ Fin ) ⊆ Fin | |
| 111 | 90 110 | sstrdi | ⊢ ( ( 𝜑 ∧ 𝑓 : 𝐾 ⟶ ( 𝒫 𝐶 ∩ Fin ) ) → ran 𝑓 ⊆ Fin ) |
| 112 | unifi | ⊢ ( ( ran 𝑓 ∈ Fin ∧ ran 𝑓 ⊆ Fin ) → ∪ ran 𝑓 ∈ Fin ) | |
| 113 | 109 111 112 | syl2anc | ⊢ ( ( 𝜑 ∧ 𝑓 : 𝐾 ⟶ ( 𝒫 𝐶 ∩ Fin ) ) → ∪ ran 𝑓 ∈ Fin ) |
| 114 | elinel2 | ⊢ ( 𝐷 ∈ ( 𝒫 ( 𝐴 × 𝐶 ) ∩ Fin ) → 𝐷 ∈ Fin ) | |
| 115 | rnfi | ⊢ ( 𝐷 ∈ Fin → ran 𝐷 ∈ Fin ) | |
| 116 | 17 114 115 | 3syl | ⊢ ( 𝜑 → ran 𝐷 ∈ Fin ) |
| 117 | 116 | adantr | ⊢ ( ( 𝜑 ∧ 𝑓 : 𝐾 ⟶ ( 𝒫 𝐶 ∩ Fin ) ) → ran 𝐷 ∈ Fin ) |
| 118 | unfi | ⊢ ( ( ∪ ran 𝑓 ∈ Fin ∧ ran 𝐷 ∈ Fin ) → ( ∪ ran 𝑓 ∪ ran 𝐷 ) ∈ Fin ) | |
| 119 | 113 117 118 | syl2anc | ⊢ ( ( 𝜑 ∧ 𝑓 : 𝐾 ⟶ ( 𝒫 𝐶 ∩ Fin ) ) → ( ∪ ran 𝑓 ∪ ran 𝐷 ) ∈ Fin ) |
| 120 | elfpw | ⊢ ( ( ∪ ran 𝑓 ∪ ran 𝐷 ) ∈ ( 𝒫 𝐶 ∩ Fin ) ↔ ( ( ∪ ran 𝑓 ∪ ran 𝐷 ) ⊆ 𝐶 ∧ ( ∪ ran 𝑓 ∪ ran 𝐷 ) ∈ Fin ) ) | |
| 121 | 102 119 120 | sylanbrc | ⊢ ( ( 𝜑 ∧ 𝑓 : 𝐾 ⟶ ( 𝒫 𝐶 ∩ Fin ) ) → ( ∪ ran 𝑓 ∪ ran 𝐷 ) ∈ ( 𝒫 𝐶 ∩ Fin ) ) |
| 122 | 121 | adantrr | ⊢ ( ( 𝜑 ∧ ( 𝑓 : 𝐾 ⟶ ( 𝒫 𝐶 ∩ Fin ) ∧ ∀ 𝑗 ∈ 𝐾 ∀ 𝑧 ∈ ( 𝒫 𝐶 ∩ Fin ) ( ( 𝑓 ‘ 𝑗 ) ⊆ 𝑧 → ( 𝐺 Σg ( ( 𝑘 ∈ 𝐶 ↦ ( 𝑗 𝐹 𝑘 ) ) ↾ 𝑧 ) ) ∈ ran ( 𝑔 ∈ 𝐿 ↦ ( ( 𝐻 ‘ 𝑗 ) − 𝑔 ) ) ) ) ) → ( ∪ ran 𝑓 ∪ ran 𝐷 ) ∈ ( 𝒫 𝐶 ∩ Fin ) ) |
| 123 | ssun2 | ⊢ ran 𝐷 ⊆ ( ∪ ran 𝑓 ∪ ran 𝐷 ) | |
| 124 | 123 | a1i | ⊢ ( ( 𝜑 ∧ ( 𝑓 : 𝐾 ⟶ ( 𝒫 𝐶 ∩ Fin ) ∧ ∀ 𝑗 ∈ 𝐾 ∀ 𝑧 ∈ ( 𝒫 𝐶 ∩ Fin ) ( ( 𝑓 ‘ 𝑗 ) ⊆ 𝑧 → ( 𝐺 Σg ( ( 𝑘 ∈ 𝐶 ↦ ( 𝑗 𝐹 𝑘 ) ) ↾ 𝑧 ) ) ∈ ran ( 𝑔 ∈ 𝐿 ↦ ( ( 𝐻 ‘ 𝑗 ) − 𝑔 ) ) ) ) ) → ran 𝐷 ⊆ ( ∪ ran 𝑓 ∪ ran 𝐷 ) ) |
| 125 | 121 | adantlr | ⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝐾 ) ∧ 𝑓 : 𝐾 ⟶ ( 𝒫 𝐶 ∩ Fin ) ) → ( ∪ ran 𝑓 ∪ ran 𝐷 ) ∈ ( 𝒫 𝐶 ∩ Fin ) ) |
| 126 | fvssunirn | ⊢ ( 𝑓 ‘ 𝑗 ) ⊆ ∪ ran 𝑓 | |
| 127 | ssun1 | ⊢ ∪ ran 𝑓 ⊆ ( ∪ ran 𝑓 ∪ ran 𝐷 ) | |
| 128 | 126 127 | sstri | ⊢ ( 𝑓 ‘ 𝑗 ) ⊆ ( ∪ ran 𝑓 ∪ ran 𝐷 ) |
| 129 | id | ⊢ ( 𝑧 = ( ∪ ran 𝑓 ∪ ran 𝐷 ) → 𝑧 = ( ∪ ran 𝑓 ∪ ran 𝐷 ) ) | |
| 130 | 128 129 | sseqtrrid | ⊢ ( 𝑧 = ( ∪ ran 𝑓 ∪ ran 𝐷 ) → ( 𝑓 ‘ 𝑗 ) ⊆ 𝑧 ) |
| 131 | pm5.5 | ⊢ ( ( 𝑓 ‘ 𝑗 ) ⊆ 𝑧 → ( ( ( 𝑓 ‘ 𝑗 ) ⊆ 𝑧 → ( 𝐺 Σg ( ( 𝑘 ∈ 𝐶 ↦ ( 𝑗 𝐹 𝑘 ) ) ↾ 𝑧 ) ) ∈ ran ( 𝑔 ∈ 𝐿 ↦ ( ( 𝐻 ‘ 𝑗 ) − 𝑔 ) ) ) ↔ ( 𝐺 Σg ( ( 𝑘 ∈ 𝐶 ↦ ( 𝑗 𝐹 𝑘 ) ) ↾ 𝑧 ) ) ∈ ran ( 𝑔 ∈ 𝐿 ↦ ( ( 𝐻 ‘ 𝑗 ) − 𝑔 ) ) ) ) | |
| 132 | 130 131 | syl | ⊢ ( 𝑧 = ( ∪ ran 𝑓 ∪ ran 𝐷 ) → ( ( ( 𝑓 ‘ 𝑗 ) ⊆ 𝑧 → ( 𝐺 Σg ( ( 𝑘 ∈ 𝐶 ↦ ( 𝑗 𝐹 𝑘 ) ) ↾ 𝑧 ) ) ∈ ran ( 𝑔 ∈ 𝐿 ↦ ( ( 𝐻 ‘ 𝑗 ) − 𝑔 ) ) ) ↔ ( 𝐺 Σg ( ( 𝑘 ∈ 𝐶 ↦ ( 𝑗 𝐹 𝑘 ) ) ↾ 𝑧 ) ) ∈ ran ( 𝑔 ∈ 𝐿 ↦ ( ( 𝐻 ‘ 𝑗 ) − 𝑔 ) ) ) ) |
| 133 | reseq2 | ⊢ ( 𝑧 = ( ∪ ran 𝑓 ∪ ran 𝐷 ) → ( ( 𝑘 ∈ 𝐶 ↦ ( 𝑗 𝐹 𝑘 ) ) ↾ 𝑧 ) = ( ( 𝑘 ∈ 𝐶 ↦ ( 𝑗 𝐹 𝑘 ) ) ↾ ( ∪ ran 𝑓 ∪ ran 𝐷 ) ) ) | |
| 134 | 133 | oveq2d | ⊢ ( 𝑧 = ( ∪ ran 𝑓 ∪ ran 𝐷 ) → ( 𝐺 Σg ( ( 𝑘 ∈ 𝐶 ↦ ( 𝑗 𝐹 𝑘 ) ) ↾ 𝑧 ) ) = ( 𝐺 Σg ( ( 𝑘 ∈ 𝐶 ↦ ( 𝑗 𝐹 𝑘 ) ) ↾ ( ∪ ran 𝑓 ∪ ran 𝐷 ) ) ) ) |
| 135 | 134 | eleq1d | ⊢ ( 𝑧 = ( ∪ ran 𝑓 ∪ ran 𝐷 ) → ( ( 𝐺 Σg ( ( 𝑘 ∈ 𝐶 ↦ ( 𝑗 𝐹 𝑘 ) ) ↾ 𝑧 ) ) ∈ ran ( 𝑔 ∈ 𝐿 ↦ ( ( 𝐻 ‘ 𝑗 ) − 𝑔 ) ) ↔ ( 𝐺 Σg ( ( 𝑘 ∈ 𝐶 ↦ ( 𝑗 𝐹 𝑘 ) ) ↾ ( ∪ ran 𝑓 ∪ ran 𝐷 ) ) ) ∈ ran ( 𝑔 ∈ 𝐿 ↦ ( ( 𝐻 ‘ 𝑗 ) − 𝑔 ) ) ) ) |
| 136 | 132 135 | bitrd | ⊢ ( 𝑧 = ( ∪ ran 𝑓 ∪ ran 𝐷 ) → ( ( ( 𝑓 ‘ 𝑗 ) ⊆ 𝑧 → ( 𝐺 Σg ( ( 𝑘 ∈ 𝐶 ↦ ( 𝑗 𝐹 𝑘 ) ) ↾ 𝑧 ) ) ∈ ran ( 𝑔 ∈ 𝐿 ↦ ( ( 𝐻 ‘ 𝑗 ) − 𝑔 ) ) ) ↔ ( 𝐺 Σg ( ( 𝑘 ∈ 𝐶 ↦ ( 𝑗 𝐹 𝑘 ) ) ↾ ( ∪ ran 𝑓 ∪ ran 𝐷 ) ) ) ∈ ran ( 𝑔 ∈ 𝐿 ↦ ( ( 𝐻 ‘ 𝑗 ) − 𝑔 ) ) ) ) |
| 137 | 136 | rspcv | ⊢ ( ( ∪ ran 𝑓 ∪ ran 𝐷 ) ∈ ( 𝒫 𝐶 ∩ Fin ) → ( ∀ 𝑧 ∈ ( 𝒫 𝐶 ∩ Fin ) ( ( 𝑓 ‘ 𝑗 ) ⊆ 𝑧 → ( 𝐺 Σg ( ( 𝑘 ∈ 𝐶 ↦ ( 𝑗 𝐹 𝑘 ) ) ↾ 𝑧 ) ) ∈ ran ( 𝑔 ∈ 𝐿 ↦ ( ( 𝐻 ‘ 𝑗 ) − 𝑔 ) ) ) → ( 𝐺 Σg ( ( 𝑘 ∈ 𝐶 ↦ ( 𝑗 𝐹 𝑘 ) ) ↾ ( ∪ ran 𝑓 ∪ ran 𝐷 ) ) ) ∈ ran ( 𝑔 ∈ 𝐿 ↦ ( ( 𝐻 ‘ 𝑗 ) − 𝑔 ) ) ) ) |
| 138 | 125 137 | syl | ⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝐾 ) ∧ 𝑓 : 𝐾 ⟶ ( 𝒫 𝐶 ∩ Fin ) ) → ( ∀ 𝑧 ∈ ( 𝒫 𝐶 ∩ Fin ) ( ( 𝑓 ‘ 𝑗 ) ⊆ 𝑧 → ( 𝐺 Σg ( ( 𝑘 ∈ 𝐶 ↦ ( 𝑗 𝐹 𝑘 ) ) ↾ 𝑧 ) ) ∈ ran ( 𝑔 ∈ 𝐿 ↦ ( ( 𝐻 ‘ 𝑗 ) − 𝑔 ) ) ) → ( 𝐺 Σg ( ( 𝑘 ∈ 𝐶 ↦ ( 𝑗 𝐹 𝑘 ) ) ↾ ( ∪ ran 𝑓 ∪ ran 𝐷 ) ) ) ∈ ran ( 𝑔 ∈ 𝐿 ↦ ( ( 𝐻 ‘ 𝑗 ) − 𝑔 ) ) ) ) |
| 139 | 2 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝐾 ) ∧ 𝑓 : 𝐾 ⟶ ( 𝒫 𝐶 ∩ Fin ) ) → 𝐺 ∈ CMnd ) |
| 140 | cmnmnd | ⊢ ( 𝐺 ∈ CMnd → 𝐺 ∈ Mnd ) | |
| 141 | 139 140 | syl | ⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝐾 ) ∧ 𝑓 : 𝐾 ⟶ ( 𝒫 𝐶 ∩ Fin ) ) → 𝐺 ∈ Mnd ) |
| 142 | simplr | ⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝐾 ) ∧ 𝑓 : 𝐾 ⟶ ( 𝒫 𝐶 ∩ Fin ) ) → 𝑗 ∈ 𝐾 ) | |
| 143 | 119 | adantlr | ⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝐾 ) ∧ 𝑓 : 𝐾 ⟶ ( 𝒫 𝐶 ∩ Fin ) ) → ( ∪ ran 𝑓 ∪ ran 𝐷 ) ∈ Fin ) |
| 144 | 102 | adantlr | ⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝐾 ) ∧ 𝑓 : 𝐾 ⟶ ( 𝒫 𝐶 ∩ Fin ) ) → ( ∪ ran 𝑓 ∪ ran 𝐷 ) ⊆ 𝐶 ) |
| 145 | 144 | sselda | ⊢ ( ( ( ( 𝜑 ∧ 𝑗 ∈ 𝐾 ) ∧ 𝑓 : 𝐾 ⟶ ( 𝒫 𝐶 ∩ Fin ) ) ∧ 𝑘 ∈ ( ∪ ran 𝑓 ∪ ran 𝐷 ) ) → 𝑘 ∈ 𝐶 ) |
| 146 | 6 | adantr | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝐾 ) → 𝐹 : ( 𝐴 × 𝐶 ) ⟶ 𝐵 ) |
| 147 | 146 22 | jca | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝐾 ) → ( 𝐹 : ( 𝐴 × 𝐶 ) ⟶ 𝐵 ∧ 𝑗 ∈ 𝐴 ) ) |
| 148 | 29 | 3expa | ⊢ ( ( ( 𝐹 : ( 𝐴 × 𝐶 ) ⟶ 𝐵 ∧ 𝑗 ∈ 𝐴 ) ∧ 𝑘 ∈ 𝐶 ) → ( 𝑗 𝐹 𝑘 ) ∈ 𝐵 ) |
| 149 | 147 148 | sylan | ⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝐾 ) ∧ 𝑘 ∈ 𝐶 ) → ( 𝑗 𝐹 𝑘 ) ∈ 𝐵 ) |
| 150 | 149 | adantlr | ⊢ ( ( ( ( 𝜑 ∧ 𝑗 ∈ 𝐾 ) ∧ 𝑓 : 𝐾 ⟶ ( 𝒫 𝐶 ∩ Fin ) ) ∧ 𝑘 ∈ 𝐶 ) → ( 𝑗 𝐹 𝑘 ) ∈ 𝐵 ) |
| 151 | 145 150 | syldan | ⊢ ( ( ( ( 𝜑 ∧ 𝑗 ∈ 𝐾 ) ∧ 𝑓 : 𝐾 ⟶ ( 𝒫 𝐶 ∩ Fin ) ) ∧ 𝑘 ∈ ( ∪ ran 𝑓 ∪ ran 𝐷 ) ) → ( 𝑗 𝐹 𝑘 ) ∈ 𝐵 ) |
| 152 | 151 | fmpttd | ⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝐾 ) ∧ 𝑓 : 𝐾 ⟶ ( 𝒫 𝐶 ∩ Fin ) ) → ( 𝑘 ∈ ( ∪ ran 𝑓 ∪ ran 𝐷 ) ↦ ( 𝑗 𝐹 𝑘 ) ) : ( ∪ ran 𝑓 ∪ ran 𝐷 ) ⟶ 𝐵 ) |
| 153 | eqid | ⊢ ( 𝑘 ∈ ( ∪ ran 𝑓 ∪ ran 𝐷 ) ↦ ( 𝑗 𝐹 𝑘 ) ) = ( 𝑘 ∈ ( ∪ ran 𝑓 ∪ ran 𝐷 ) ↦ ( 𝑗 𝐹 𝑘 ) ) | |
| 154 | ovexd | ⊢ ( ( ( ( 𝜑 ∧ 𝑗 ∈ 𝐾 ) ∧ 𝑓 : 𝐾 ⟶ ( 𝒫 𝐶 ∩ Fin ) ) ∧ 𝑘 ∈ ( ∪ ran 𝑓 ∪ ran 𝐷 ) ) → ( 𝑗 𝐹 𝑘 ) ∈ V ) | |
| 155 | 10 | fvexi | ⊢ 0 ∈ V |
| 156 | 155 | a1i | ⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝐾 ) ∧ 𝑓 : 𝐾 ⟶ ( 𝒫 𝐶 ∩ Fin ) ) → 0 ∈ V ) |
| 157 | 153 143 154 156 | fsuppmptdm | ⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝐾 ) ∧ 𝑓 : 𝐾 ⟶ ( 𝒫 𝐶 ∩ Fin ) ) → ( 𝑘 ∈ ( ∪ ran 𝑓 ∪ ran 𝐷 ) ↦ ( 𝑗 𝐹 𝑘 ) ) finSupp 0 ) |
| 158 | 1 10 139 143 152 157 | gsumcl | ⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝐾 ) ∧ 𝑓 : 𝐾 ⟶ ( 𝒫 𝐶 ∩ Fin ) ) → ( 𝐺 Σg ( 𝑘 ∈ ( ∪ ran 𝑓 ∪ ran 𝐷 ) ↦ ( 𝑗 𝐹 𝑘 ) ) ) ∈ 𝐵 ) |
| 159 | velsn | ⊢ ( 𝑦 ∈ { 𝑗 } ↔ 𝑦 = 𝑗 ) | |
| 160 | ovres | ⊢ ( ( 𝑦 ∈ { 𝑗 } ∧ 𝑘 ∈ ( ∪ ran 𝑓 ∪ ran 𝐷 ) ) → ( 𝑦 ( 𝐹 ↾ ( { 𝑗 } × ( ∪ ran 𝑓 ∪ ran 𝐷 ) ) ) 𝑘 ) = ( 𝑦 𝐹 𝑘 ) ) | |
| 161 | 159 160 | sylanbr | ⊢ ( ( 𝑦 = 𝑗 ∧ 𝑘 ∈ ( ∪ ran 𝑓 ∪ ran 𝐷 ) ) → ( 𝑦 ( 𝐹 ↾ ( { 𝑗 } × ( ∪ ran 𝑓 ∪ ran 𝐷 ) ) ) 𝑘 ) = ( 𝑦 𝐹 𝑘 ) ) |
| 162 | oveq1 | ⊢ ( 𝑦 = 𝑗 → ( 𝑦 𝐹 𝑘 ) = ( 𝑗 𝐹 𝑘 ) ) | |
| 163 | 162 | adantr | ⊢ ( ( 𝑦 = 𝑗 ∧ 𝑘 ∈ ( ∪ ran 𝑓 ∪ ran 𝐷 ) ) → ( 𝑦 𝐹 𝑘 ) = ( 𝑗 𝐹 𝑘 ) ) |
| 164 | 161 163 | eqtrd | ⊢ ( ( 𝑦 = 𝑗 ∧ 𝑘 ∈ ( ∪ ran 𝑓 ∪ ran 𝐷 ) ) → ( 𝑦 ( 𝐹 ↾ ( { 𝑗 } × ( ∪ ran 𝑓 ∪ ran 𝐷 ) ) ) 𝑘 ) = ( 𝑗 𝐹 𝑘 ) ) |
| 165 | 164 | mpteq2dva | ⊢ ( 𝑦 = 𝑗 → ( 𝑘 ∈ ( ∪ ran 𝑓 ∪ ran 𝐷 ) ↦ ( 𝑦 ( 𝐹 ↾ ( { 𝑗 } × ( ∪ ran 𝑓 ∪ ran 𝐷 ) ) ) 𝑘 ) ) = ( 𝑘 ∈ ( ∪ ran 𝑓 ∪ ran 𝐷 ) ↦ ( 𝑗 𝐹 𝑘 ) ) ) |
| 166 | 165 | oveq2d | ⊢ ( 𝑦 = 𝑗 → ( 𝐺 Σg ( 𝑘 ∈ ( ∪ ran 𝑓 ∪ ran 𝐷 ) ↦ ( 𝑦 ( 𝐹 ↾ ( { 𝑗 } × ( ∪ ran 𝑓 ∪ ran 𝐷 ) ) ) 𝑘 ) ) ) = ( 𝐺 Σg ( 𝑘 ∈ ( ∪ ran 𝑓 ∪ ran 𝐷 ) ↦ ( 𝑗 𝐹 𝑘 ) ) ) ) |
| 167 | 1 166 | gsumsn | ⊢ ( ( 𝐺 ∈ Mnd ∧ 𝑗 ∈ 𝐾 ∧ ( 𝐺 Σg ( 𝑘 ∈ ( ∪ ran 𝑓 ∪ ran 𝐷 ) ↦ ( 𝑗 𝐹 𝑘 ) ) ) ∈ 𝐵 ) → ( 𝐺 Σg ( 𝑦 ∈ { 𝑗 } ↦ ( 𝐺 Σg ( 𝑘 ∈ ( ∪ ran 𝑓 ∪ ran 𝐷 ) ↦ ( 𝑦 ( 𝐹 ↾ ( { 𝑗 } × ( ∪ ran 𝑓 ∪ ran 𝐷 ) ) ) 𝑘 ) ) ) ) ) = ( 𝐺 Σg ( 𝑘 ∈ ( ∪ ran 𝑓 ∪ ran 𝐷 ) ↦ ( 𝑗 𝐹 𝑘 ) ) ) ) |
| 168 | 141 142 158 167 | syl3anc | ⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝐾 ) ∧ 𝑓 : 𝐾 ⟶ ( 𝒫 𝐶 ∩ Fin ) ) → ( 𝐺 Σg ( 𝑦 ∈ { 𝑗 } ↦ ( 𝐺 Σg ( 𝑘 ∈ ( ∪ ran 𝑓 ∪ ran 𝐷 ) ↦ ( 𝑦 ( 𝐹 ↾ ( { 𝑗 } × ( ∪ ran 𝑓 ∪ ran 𝐷 ) ) ) 𝑘 ) ) ) ) ) = ( 𝐺 Σg ( 𝑘 ∈ ( ∪ ran 𝑓 ∪ ran 𝐷 ) ↦ ( 𝑗 𝐹 𝑘 ) ) ) ) |
| 169 | snfi | ⊢ { 𝑗 } ∈ Fin | |
| 170 | 169 | a1i | ⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝐾 ) ∧ 𝑓 : 𝐾 ⟶ ( 𝒫 𝐶 ∩ Fin ) ) → { 𝑗 } ∈ Fin ) |
| 171 | 6 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝐾 ) ∧ 𝑓 : 𝐾 ⟶ ( 𝒫 𝐶 ∩ Fin ) ) → 𝐹 : ( 𝐴 × 𝐶 ) ⟶ 𝐵 ) |
| 172 | 22 | adantr | ⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝐾 ) ∧ 𝑓 : 𝐾 ⟶ ( 𝒫 𝐶 ∩ Fin ) ) → 𝑗 ∈ 𝐴 ) |
| 173 | 172 | snssd | ⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝐾 ) ∧ 𝑓 : 𝐾 ⟶ ( 𝒫 𝐶 ∩ Fin ) ) → { 𝑗 } ⊆ 𝐴 ) |
| 174 | xpss12 | ⊢ ( ( { 𝑗 } ⊆ 𝐴 ∧ ( ∪ ran 𝑓 ∪ ran 𝐷 ) ⊆ 𝐶 ) → ( { 𝑗 } × ( ∪ ran 𝑓 ∪ ran 𝐷 ) ) ⊆ ( 𝐴 × 𝐶 ) ) | |
| 175 | 173 144 174 | syl2anc | ⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝐾 ) ∧ 𝑓 : 𝐾 ⟶ ( 𝒫 𝐶 ∩ Fin ) ) → ( { 𝑗 } × ( ∪ ran 𝑓 ∪ ran 𝐷 ) ) ⊆ ( 𝐴 × 𝐶 ) ) |
| 176 | 171 175 | fssresd | ⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝐾 ) ∧ 𝑓 : 𝐾 ⟶ ( 𝒫 𝐶 ∩ Fin ) ) → ( 𝐹 ↾ ( { 𝑗 } × ( ∪ ran 𝑓 ∪ ran 𝐷 ) ) ) : ( { 𝑗 } × ( ∪ ran 𝑓 ∪ ran 𝐷 ) ) ⟶ 𝐵 ) |
| 177 | xpfi | ⊢ ( ( { 𝑗 } ∈ Fin ∧ ( ∪ ran 𝑓 ∪ ran 𝐷 ) ∈ Fin ) → ( { 𝑗 } × ( ∪ ran 𝑓 ∪ ran 𝐷 ) ) ∈ Fin ) | |
| 178 | 169 143 177 | sylancr | ⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝐾 ) ∧ 𝑓 : 𝐾 ⟶ ( 𝒫 𝐶 ∩ Fin ) ) → ( { 𝑗 } × ( ∪ ran 𝑓 ∪ ran 𝐷 ) ) ∈ Fin ) |
| 179 | 176 178 156 | fdmfifsupp | ⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝐾 ) ∧ 𝑓 : 𝐾 ⟶ ( 𝒫 𝐶 ∩ Fin ) ) → ( 𝐹 ↾ ( { 𝑗 } × ( ∪ ran 𝑓 ∪ ran 𝐷 ) ) ) finSupp 0 ) |
| 180 | 1 10 139 170 143 176 179 | gsumxp | ⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝐾 ) ∧ 𝑓 : 𝐾 ⟶ ( 𝒫 𝐶 ∩ Fin ) ) → ( 𝐺 Σg ( 𝐹 ↾ ( { 𝑗 } × ( ∪ ran 𝑓 ∪ ran 𝐷 ) ) ) ) = ( 𝐺 Σg ( 𝑦 ∈ { 𝑗 } ↦ ( 𝐺 Σg ( 𝑘 ∈ ( ∪ ran 𝑓 ∪ ran 𝐷 ) ↦ ( 𝑦 ( 𝐹 ↾ ( { 𝑗 } × ( ∪ ran 𝑓 ∪ ran 𝐷 ) ) ) 𝑘 ) ) ) ) ) ) |
| 181 | 144 | resmptd | ⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝐾 ) ∧ 𝑓 : 𝐾 ⟶ ( 𝒫 𝐶 ∩ Fin ) ) → ( ( 𝑘 ∈ 𝐶 ↦ ( 𝑗 𝐹 𝑘 ) ) ↾ ( ∪ ran 𝑓 ∪ ran 𝐷 ) ) = ( 𝑘 ∈ ( ∪ ran 𝑓 ∪ ran 𝐷 ) ↦ ( 𝑗 𝐹 𝑘 ) ) ) |
| 182 | 181 | oveq2d | ⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝐾 ) ∧ 𝑓 : 𝐾 ⟶ ( 𝒫 𝐶 ∩ Fin ) ) → ( 𝐺 Σg ( ( 𝑘 ∈ 𝐶 ↦ ( 𝑗 𝐹 𝑘 ) ) ↾ ( ∪ ran 𝑓 ∪ ran 𝐷 ) ) ) = ( 𝐺 Σg ( 𝑘 ∈ ( ∪ ran 𝑓 ∪ ran 𝐷 ) ↦ ( 𝑗 𝐹 𝑘 ) ) ) ) |
| 183 | 168 180 182 | 3eqtr4rd | ⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝐾 ) ∧ 𝑓 : 𝐾 ⟶ ( 𝒫 𝐶 ∩ Fin ) ) → ( 𝐺 Σg ( ( 𝑘 ∈ 𝐶 ↦ ( 𝑗 𝐹 𝑘 ) ) ↾ ( ∪ ran 𝑓 ∪ ran 𝐷 ) ) ) = ( 𝐺 Σg ( 𝐹 ↾ ( { 𝑗 } × ( ∪ ran 𝑓 ∪ ran 𝐷 ) ) ) ) ) |
| 184 | 183 | eleq1d | ⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝐾 ) ∧ 𝑓 : 𝐾 ⟶ ( 𝒫 𝐶 ∩ Fin ) ) → ( ( 𝐺 Σg ( ( 𝑘 ∈ 𝐶 ↦ ( 𝑗 𝐹 𝑘 ) ) ↾ ( ∪ ran 𝑓 ∪ ran 𝐷 ) ) ) ∈ ran ( 𝑔 ∈ 𝐿 ↦ ( ( 𝐻 ‘ 𝑗 ) − 𝑔 ) ) ↔ ( 𝐺 Σg ( 𝐹 ↾ ( { 𝑗 } × ( ∪ ran 𝑓 ∪ ran 𝐷 ) ) ) ) ∈ ran ( 𝑔 ∈ 𝐿 ↦ ( ( 𝐻 ‘ 𝑗 ) − 𝑔 ) ) ) ) |
| 185 | ovex | ⊢ ( ( 𝐻 ‘ 𝑗 ) − 𝑔 ) ∈ V | |
| 186 | 76 185 | elrnmpti | ⊢ ( ( 𝐺 Σg ( 𝐹 ↾ ( { 𝑗 } × ( ∪ ran 𝑓 ∪ ran 𝐷 ) ) ) ) ∈ ran ( 𝑔 ∈ 𝐿 ↦ ( ( 𝐻 ‘ 𝑗 ) − 𝑔 ) ) ↔ ∃ 𝑔 ∈ 𝐿 ( 𝐺 Σg ( 𝐹 ↾ ( { 𝑗 } × ( ∪ ran 𝑓 ∪ ran 𝐷 ) ) ) ) = ( ( 𝐻 ‘ 𝑗 ) − 𝑔 ) ) |
| 187 | isabl | ⊢ ( 𝐺 ∈ Abel ↔ ( 𝐺 ∈ Grp ∧ 𝐺 ∈ CMnd ) ) | |
| 188 | 48 2 187 | sylanbrc | ⊢ ( 𝜑 → 𝐺 ∈ Abel ) |
| 189 | 188 | ad3antrrr | ⊢ ( ( ( ( 𝜑 ∧ 𝑗 ∈ 𝐾 ) ∧ 𝑓 : 𝐾 ⟶ ( 𝒫 𝐶 ∩ Fin ) ) ∧ 𝑔 ∈ 𝐿 ) → 𝐺 ∈ Abel ) |
| 190 | 22 42 | syldan | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝐾 ) → ( 𝐻 ‘ 𝑗 ) ∈ 𝐵 ) |
| 191 | 190 | ad2antrr | ⊢ ( ( ( ( 𝜑 ∧ 𝑗 ∈ 𝐾 ) ∧ 𝑓 : 𝐾 ⟶ ( 𝒫 𝐶 ∩ Fin ) ) ∧ 𝑔 ∈ 𝐿 ) → ( 𝐻 ‘ 𝑗 ) ∈ 𝐵 ) |
| 192 | 37 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝐾 ) ∧ 𝑓 : 𝐾 ⟶ ( 𝒫 𝐶 ∩ Fin ) ) → 𝐿 ⊆ 𝐵 ) |
| 193 | 192 | sselda | ⊢ ( ( ( ( 𝜑 ∧ 𝑗 ∈ 𝐾 ) ∧ 𝑓 : 𝐾 ⟶ ( 𝒫 𝐶 ∩ Fin ) ) ∧ 𝑔 ∈ 𝐿 ) → 𝑔 ∈ 𝐵 ) |
| 194 | 1 12 189 191 193 | ablnncan | ⊢ ( ( ( ( 𝜑 ∧ 𝑗 ∈ 𝐾 ) ∧ 𝑓 : 𝐾 ⟶ ( 𝒫 𝐶 ∩ Fin ) ) ∧ 𝑔 ∈ 𝐿 ) → ( ( 𝐻 ‘ 𝑗 ) − ( ( 𝐻 ‘ 𝑗 ) − 𝑔 ) ) = 𝑔 ) |
| 195 | simpr | ⊢ ( ( ( ( 𝜑 ∧ 𝑗 ∈ 𝐾 ) ∧ 𝑓 : 𝐾 ⟶ ( 𝒫 𝐶 ∩ Fin ) ) ∧ 𝑔 ∈ 𝐿 ) → 𝑔 ∈ 𝐿 ) | |
| 196 | 194 195 | eqeltrd | ⊢ ( ( ( ( 𝜑 ∧ 𝑗 ∈ 𝐾 ) ∧ 𝑓 : 𝐾 ⟶ ( 𝒫 𝐶 ∩ Fin ) ) ∧ 𝑔 ∈ 𝐿 ) → ( ( 𝐻 ‘ 𝑗 ) − ( ( 𝐻 ‘ 𝑗 ) − 𝑔 ) ) ∈ 𝐿 ) |
| 197 | oveq2 | ⊢ ( ( 𝐺 Σg ( 𝐹 ↾ ( { 𝑗 } × ( ∪ ran 𝑓 ∪ ran 𝐷 ) ) ) ) = ( ( 𝐻 ‘ 𝑗 ) − 𝑔 ) → ( ( 𝐻 ‘ 𝑗 ) − ( 𝐺 Σg ( 𝐹 ↾ ( { 𝑗 } × ( ∪ ran 𝑓 ∪ ran 𝐷 ) ) ) ) ) = ( ( 𝐻 ‘ 𝑗 ) − ( ( 𝐻 ‘ 𝑗 ) − 𝑔 ) ) ) | |
| 198 | 197 | eleq1d | ⊢ ( ( 𝐺 Σg ( 𝐹 ↾ ( { 𝑗 } × ( ∪ ran 𝑓 ∪ ran 𝐷 ) ) ) ) = ( ( 𝐻 ‘ 𝑗 ) − 𝑔 ) → ( ( ( 𝐻 ‘ 𝑗 ) − ( 𝐺 Σg ( 𝐹 ↾ ( { 𝑗 } × ( ∪ ran 𝑓 ∪ ran 𝐷 ) ) ) ) ) ∈ 𝐿 ↔ ( ( 𝐻 ‘ 𝑗 ) − ( ( 𝐻 ‘ 𝑗 ) − 𝑔 ) ) ∈ 𝐿 ) ) |
| 199 | 196 198 | syl5ibrcom | ⊢ ( ( ( ( 𝜑 ∧ 𝑗 ∈ 𝐾 ) ∧ 𝑓 : 𝐾 ⟶ ( 𝒫 𝐶 ∩ Fin ) ) ∧ 𝑔 ∈ 𝐿 ) → ( ( 𝐺 Σg ( 𝐹 ↾ ( { 𝑗 } × ( ∪ ran 𝑓 ∪ ran 𝐷 ) ) ) ) = ( ( 𝐻 ‘ 𝑗 ) − 𝑔 ) → ( ( 𝐻 ‘ 𝑗 ) − ( 𝐺 Σg ( 𝐹 ↾ ( { 𝑗 } × ( ∪ ran 𝑓 ∪ ran 𝐷 ) ) ) ) ) ∈ 𝐿 ) ) |
| 200 | 199 | rexlimdva | ⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝐾 ) ∧ 𝑓 : 𝐾 ⟶ ( 𝒫 𝐶 ∩ Fin ) ) → ( ∃ 𝑔 ∈ 𝐿 ( 𝐺 Σg ( 𝐹 ↾ ( { 𝑗 } × ( ∪ ran 𝑓 ∪ ran 𝐷 ) ) ) ) = ( ( 𝐻 ‘ 𝑗 ) − 𝑔 ) → ( ( 𝐻 ‘ 𝑗 ) − ( 𝐺 Σg ( 𝐹 ↾ ( { 𝑗 } × ( ∪ ran 𝑓 ∪ ran 𝐷 ) ) ) ) ) ∈ 𝐿 ) ) |
| 201 | 186 200 | biimtrid | ⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝐾 ) ∧ 𝑓 : 𝐾 ⟶ ( 𝒫 𝐶 ∩ Fin ) ) → ( ( 𝐺 Σg ( 𝐹 ↾ ( { 𝑗 } × ( ∪ ran 𝑓 ∪ ran 𝐷 ) ) ) ) ∈ ran ( 𝑔 ∈ 𝐿 ↦ ( ( 𝐻 ‘ 𝑗 ) − 𝑔 ) ) → ( ( 𝐻 ‘ 𝑗 ) − ( 𝐺 Σg ( 𝐹 ↾ ( { 𝑗 } × ( ∪ ran 𝑓 ∪ ran 𝐷 ) ) ) ) ) ∈ 𝐿 ) ) |
| 202 | 184 201 | sylbid | ⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝐾 ) ∧ 𝑓 : 𝐾 ⟶ ( 𝒫 𝐶 ∩ Fin ) ) → ( ( 𝐺 Σg ( ( 𝑘 ∈ 𝐶 ↦ ( 𝑗 𝐹 𝑘 ) ) ↾ ( ∪ ran 𝑓 ∪ ran 𝐷 ) ) ) ∈ ran ( 𝑔 ∈ 𝐿 ↦ ( ( 𝐻 ‘ 𝑗 ) − 𝑔 ) ) → ( ( 𝐻 ‘ 𝑗 ) − ( 𝐺 Σg ( 𝐹 ↾ ( { 𝑗 } × ( ∪ ran 𝑓 ∪ ran 𝐷 ) ) ) ) ) ∈ 𝐿 ) ) |
| 203 | 138 202 | syld | ⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝐾 ) ∧ 𝑓 : 𝐾 ⟶ ( 𝒫 𝐶 ∩ Fin ) ) → ( ∀ 𝑧 ∈ ( 𝒫 𝐶 ∩ Fin ) ( ( 𝑓 ‘ 𝑗 ) ⊆ 𝑧 → ( 𝐺 Σg ( ( 𝑘 ∈ 𝐶 ↦ ( 𝑗 𝐹 𝑘 ) ) ↾ 𝑧 ) ) ∈ ran ( 𝑔 ∈ 𝐿 ↦ ( ( 𝐻 ‘ 𝑗 ) − 𝑔 ) ) ) → ( ( 𝐻 ‘ 𝑗 ) − ( 𝐺 Σg ( 𝐹 ↾ ( { 𝑗 } × ( ∪ ran 𝑓 ∪ ran 𝐷 ) ) ) ) ) ∈ 𝐿 ) ) |
| 204 | 203 | an32s | ⊢ ( ( ( 𝜑 ∧ 𝑓 : 𝐾 ⟶ ( 𝒫 𝐶 ∩ Fin ) ) ∧ 𝑗 ∈ 𝐾 ) → ( ∀ 𝑧 ∈ ( 𝒫 𝐶 ∩ Fin ) ( ( 𝑓 ‘ 𝑗 ) ⊆ 𝑧 → ( 𝐺 Σg ( ( 𝑘 ∈ 𝐶 ↦ ( 𝑗 𝐹 𝑘 ) ) ↾ 𝑧 ) ) ∈ ran ( 𝑔 ∈ 𝐿 ↦ ( ( 𝐻 ‘ 𝑗 ) − 𝑔 ) ) ) → ( ( 𝐻 ‘ 𝑗 ) − ( 𝐺 Σg ( 𝐹 ↾ ( { 𝑗 } × ( ∪ ran 𝑓 ∪ ran 𝐷 ) ) ) ) ) ∈ 𝐿 ) ) |
| 205 | 204 | ralimdva | ⊢ ( ( 𝜑 ∧ 𝑓 : 𝐾 ⟶ ( 𝒫 𝐶 ∩ Fin ) ) → ( ∀ 𝑗 ∈ 𝐾 ∀ 𝑧 ∈ ( 𝒫 𝐶 ∩ Fin ) ( ( 𝑓 ‘ 𝑗 ) ⊆ 𝑧 → ( 𝐺 Σg ( ( 𝑘 ∈ 𝐶 ↦ ( 𝑗 𝐹 𝑘 ) ) ↾ 𝑧 ) ) ∈ ran ( 𝑔 ∈ 𝐿 ↦ ( ( 𝐻 ‘ 𝑗 ) − 𝑔 ) ) ) → ∀ 𝑗 ∈ 𝐾 ( ( 𝐻 ‘ 𝑗 ) − ( 𝐺 Σg ( 𝐹 ↾ ( { 𝑗 } × ( ∪ ran 𝑓 ∪ ran 𝐷 ) ) ) ) ) ∈ 𝐿 ) ) |
| 206 | 205 | impr | ⊢ ( ( 𝜑 ∧ ( 𝑓 : 𝐾 ⟶ ( 𝒫 𝐶 ∩ Fin ) ∧ ∀ 𝑗 ∈ 𝐾 ∀ 𝑧 ∈ ( 𝒫 𝐶 ∩ Fin ) ( ( 𝑓 ‘ 𝑗 ) ⊆ 𝑧 → ( 𝐺 Σg ( ( 𝑘 ∈ 𝐶 ↦ ( 𝑗 𝐹 𝑘 ) ) ↾ 𝑧 ) ) ∈ ran ( 𝑔 ∈ 𝐿 ↦ ( ( 𝐻 ‘ 𝑗 ) − 𝑔 ) ) ) ) ) → ∀ 𝑗 ∈ 𝐾 ( ( 𝐻 ‘ 𝑗 ) − ( 𝐺 Σg ( 𝐹 ↾ ( { 𝑗 } × ( ∪ ran 𝑓 ∪ ran 𝐷 ) ) ) ) ) ∈ 𝐿 ) |
| 207 | fveq2 | ⊢ ( 𝑗 = 𝑥 → ( 𝐻 ‘ 𝑗 ) = ( 𝐻 ‘ 𝑥 ) ) | |
| 208 | sneq | ⊢ ( 𝑗 = 𝑥 → { 𝑗 } = { 𝑥 } ) | |
| 209 | 208 | xpeq1d | ⊢ ( 𝑗 = 𝑥 → ( { 𝑗 } × ( ∪ ran 𝑓 ∪ ran 𝐷 ) ) = ( { 𝑥 } × ( ∪ ran 𝑓 ∪ ran 𝐷 ) ) ) |
| 210 | 209 | reseq2d | ⊢ ( 𝑗 = 𝑥 → ( 𝐹 ↾ ( { 𝑗 } × ( ∪ ran 𝑓 ∪ ran 𝐷 ) ) ) = ( 𝐹 ↾ ( { 𝑥 } × ( ∪ ran 𝑓 ∪ ran 𝐷 ) ) ) ) |
| 211 | 210 | oveq2d | ⊢ ( 𝑗 = 𝑥 → ( 𝐺 Σg ( 𝐹 ↾ ( { 𝑗 } × ( ∪ ran 𝑓 ∪ ran 𝐷 ) ) ) ) = ( 𝐺 Σg ( 𝐹 ↾ ( { 𝑥 } × ( ∪ ran 𝑓 ∪ ran 𝐷 ) ) ) ) ) |
| 212 | 207 211 | oveq12d | ⊢ ( 𝑗 = 𝑥 → ( ( 𝐻 ‘ 𝑗 ) − ( 𝐺 Σg ( 𝐹 ↾ ( { 𝑗 } × ( ∪ ran 𝑓 ∪ ran 𝐷 ) ) ) ) ) = ( ( 𝐻 ‘ 𝑥 ) − ( 𝐺 Σg ( 𝐹 ↾ ( { 𝑥 } × ( ∪ ran 𝑓 ∪ ran 𝐷 ) ) ) ) ) ) |
| 213 | 212 | eleq1d | ⊢ ( 𝑗 = 𝑥 → ( ( ( 𝐻 ‘ 𝑗 ) − ( 𝐺 Σg ( 𝐹 ↾ ( { 𝑗 } × ( ∪ ran 𝑓 ∪ ran 𝐷 ) ) ) ) ) ∈ 𝐿 ↔ ( ( 𝐻 ‘ 𝑥 ) − ( 𝐺 Σg ( 𝐹 ↾ ( { 𝑥 } × ( ∪ ran 𝑓 ∪ ran 𝐷 ) ) ) ) ) ∈ 𝐿 ) ) |
| 214 | 213 | cbvralvw | ⊢ ( ∀ 𝑗 ∈ 𝐾 ( ( 𝐻 ‘ 𝑗 ) − ( 𝐺 Σg ( 𝐹 ↾ ( { 𝑗 } × ( ∪ ran 𝑓 ∪ ran 𝐷 ) ) ) ) ) ∈ 𝐿 ↔ ∀ 𝑥 ∈ 𝐾 ( ( 𝐻 ‘ 𝑥 ) − ( 𝐺 Σg ( 𝐹 ↾ ( { 𝑥 } × ( ∪ ran 𝑓 ∪ ran 𝐷 ) ) ) ) ) ∈ 𝐿 ) |
| 215 | 206 214 | sylib | ⊢ ( ( 𝜑 ∧ ( 𝑓 : 𝐾 ⟶ ( 𝒫 𝐶 ∩ Fin ) ∧ ∀ 𝑗 ∈ 𝐾 ∀ 𝑧 ∈ ( 𝒫 𝐶 ∩ Fin ) ( ( 𝑓 ‘ 𝑗 ) ⊆ 𝑧 → ( 𝐺 Σg ( ( 𝑘 ∈ 𝐶 ↦ ( 𝑗 𝐹 𝑘 ) ) ↾ 𝑧 ) ) ∈ ran ( 𝑔 ∈ 𝐿 ↦ ( ( 𝐻 ‘ 𝑗 ) − 𝑔 ) ) ) ) ) → ∀ 𝑥 ∈ 𝐾 ( ( 𝐻 ‘ 𝑥 ) − ( 𝐺 Σg ( 𝐹 ↾ ( { 𝑥 } × ( ∪ ran 𝑓 ∪ ran 𝐷 ) ) ) ) ) ∈ 𝐿 ) |
| 216 | sseq2 | ⊢ ( 𝑛 = ( ∪ ran 𝑓 ∪ ran 𝐷 ) → ( ran 𝐷 ⊆ 𝑛 ↔ ran 𝐷 ⊆ ( ∪ ran 𝑓 ∪ ran 𝐷 ) ) ) | |
| 217 | xpeq2 | ⊢ ( 𝑛 = ( ∪ ran 𝑓 ∪ ran 𝐷 ) → ( { 𝑥 } × 𝑛 ) = ( { 𝑥 } × ( ∪ ran 𝑓 ∪ ran 𝐷 ) ) ) | |
| 218 | 217 | reseq2d | ⊢ ( 𝑛 = ( ∪ ran 𝑓 ∪ ran 𝐷 ) → ( 𝐹 ↾ ( { 𝑥 } × 𝑛 ) ) = ( 𝐹 ↾ ( { 𝑥 } × ( ∪ ran 𝑓 ∪ ran 𝐷 ) ) ) ) |
| 219 | 218 | oveq2d | ⊢ ( 𝑛 = ( ∪ ran 𝑓 ∪ ran 𝐷 ) → ( 𝐺 Σg ( 𝐹 ↾ ( { 𝑥 } × 𝑛 ) ) ) = ( 𝐺 Σg ( 𝐹 ↾ ( { 𝑥 } × ( ∪ ran 𝑓 ∪ ran 𝐷 ) ) ) ) ) |
| 220 | 219 | oveq2d | ⊢ ( 𝑛 = ( ∪ ran 𝑓 ∪ ran 𝐷 ) → ( ( 𝐻 ‘ 𝑥 ) − ( 𝐺 Σg ( 𝐹 ↾ ( { 𝑥 } × 𝑛 ) ) ) ) = ( ( 𝐻 ‘ 𝑥 ) − ( 𝐺 Σg ( 𝐹 ↾ ( { 𝑥 } × ( ∪ ran 𝑓 ∪ ran 𝐷 ) ) ) ) ) ) |
| 221 | 220 | eleq1d | ⊢ ( 𝑛 = ( ∪ ran 𝑓 ∪ ran 𝐷 ) → ( ( ( 𝐻 ‘ 𝑥 ) − ( 𝐺 Σg ( 𝐹 ↾ ( { 𝑥 } × 𝑛 ) ) ) ) ∈ 𝐿 ↔ ( ( 𝐻 ‘ 𝑥 ) − ( 𝐺 Σg ( 𝐹 ↾ ( { 𝑥 } × ( ∪ ran 𝑓 ∪ ran 𝐷 ) ) ) ) ) ∈ 𝐿 ) ) |
| 222 | 221 | ralbidv | ⊢ ( 𝑛 = ( ∪ ran 𝑓 ∪ ran 𝐷 ) → ( ∀ 𝑥 ∈ 𝐾 ( ( 𝐻 ‘ 𝑥 ) − ( 𝐺 Σg ( 𝐹 ↾ ( { 𝑥 } × 𝑛 ) ) ) ) ∈ 𝐿 ↔ ∀ 𝑥 ∈ 𝐾 ( ( 𝐻 ‘ 𝑥 ) − ( 𝐺 Σg ( 𝐹 ↾ ( { 𝑥 } × ( ∪ ran 𝑓 ∪ ran 𝐷 ) ) ) ) ) ∈ 𝐿 ) ) |
| 223 | 216 222 | anbi12d | ⊢ ( 𝑛 = ( ∪ ran 𝑓 ∪ ran 𝐷 ) → ( ( ran 𝐷 ⊆ 𝑛 ∧ ∀ 𝑥 ∈ 𝐾 ( ( 𝐻 ‘ 𝑥 ) − ( 𝐺 Σg ( 𝐹 ↾ ( { 𝑥 } × 𝑛 ) ) ) ) ∈ 𝐿 ) ↔ ( ran 𝐷 ⊆ ( ∪ ran 𝑓 ∪ ran 𝐷 ) ∧ ∀ 𝑥 ∈ 𝐾 ( ( 𝐻 ‘ 𝑥 ) − ( 𝐺 Σg ( 𝐹 ↾ ( { 𝑥 } × ( ∪ ran 𝑓 ∪ ran 𝐷 ) ) ) ) ) ∈ 𝐿 ) ) ) |
| 224 | 223 | rspcev | ⊢ ( ( ( ∪ ran 𝑓 ∪ ran 𝐷 ) ∈ ( 𝒫 𝐶 ∩ Fin ) ∧ ( ran 𝐷 ⊆ ( ∪ ran 𝑓 ∪ ran 𝐷 ) ∧ ∀ 𝑥 ∈ 𝐾 ( ( 𝐻 ‘ 𝑥 ) − ( 𝐺 Σg ( 𝐹 ↾ ( { 𝑥 } × ( ∪ ran 𝑓 ∪ ran 𝐷 ) ) ) ) ) ∈ 𝐿 ) ) → ∃ 𝑛 ∈ ( 𝒫 𝐶 ∩ Fin ) ( ran 𝐷 ⊆ 𝑛 ∧ ∀ 𝑥 ∈ 𝐾 ( ( 𝐻 ‘ 𝑥 ) − ( 𝐺 Σg ( 𝐹 ↾ ( { 𝑥 } × 𝑛 ) ) ) ) ∈ 𝐿 ) ) |
| 225 | 122 124 215 224 | syl12anc | ⊢ ( ( 𝜑 ∧ ( 𝑓 : 𝐾 ⟶ ( 𝒫 𝐶 ∩ Fin ) ∧ ∀ 𝑗 ∈ 𝐾 ∀ 𝑧 ∈ ( 𝒫 𝐶 ∩ Fin ) ( ( 𝑓 ‘ 𝑗 ) ⊆ 𝑧 → ( 𝐺 Σg ( ( 𝑘 ∈ 𝐶 ↦ ( 𝑗 𝐹 𝑘 ) ) ↾ 𝑧 ) ) ∈ ran ( 𝑔 ∈ 𝐿 ↦ ( ( 𝐻 ‘ 𝑗 ) − 𝑔 ) ) ) ) ) → ∃ 𝑛 ∈ ( 𝒫 𝐶 ∩ Fin ) ( ran 𝐷 ⊆ 𝑛 ∧ ∀ 𝑥 ∈ 𝐾 ( ( 𝐻 ‘ 𝑥 ) − ( 𝐺 Σg ( 𝐹 ↾ ( { 𝑥 } × 𝑛 ) ) ) ) ∈ 𝐿 ) ) |
| 226 | 88 225 | exlimddv | ⊢ ( 𝜑 → ∃ 𝑛 ∈ ( 𝒫 𝐶 ∩ Fin ) ( ran 𝐷 ⊆ 𝑛 ∧ ∀ 𝑥 ∈ 𝐾 ( ( 𝐻 ‘ 𝑥 ) − ( 𝐺 Σg ( 𝐹 ↾ ( { 𝑥 } × 𝑛 ) ) ) ) ∈ 𝐿 ) ) |