This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The composite of two homeomorphisms is a homeomorphism. (Contributed by FL, 9-Mar-2007) (Proof shortened by Mario Carneiro, 23-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | hmeoco | ⊢ ( ( 𝐹 ∈ ( 𝐽 Homeo 𝐾 ) ∧ 𝐺 ∈ ( 𝐾 Homeo 𝐿 ) ) → ( 𝐺 ∘ 𝐹 ) ∈ ( 𝐽 Homeo 𝐿 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hmeocn | ⊢ ( 𝐹 ∈ ( 𝐽 Homeo 𝐾 ) → 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ) | |
| 2 | hmeocn | ⊢ ( 𝐺 ∈ ( 𝐾 Homeo 𝐿 ) → 𝐺 ∈ ( 𝐾 Cn 𝐿 ) ) | |
| 3 | cnco | ⊢ ( ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ∧ 𝐺 ∈ ( 𝐾 Cn 𝐿 ) ) → ( 𝐺 ∘ 𝐹 ) ∈ ( 𝐽 Cn 𝐿 ) ) | |
| 4 | 1 2 3 | syl2an | ⊢ ( ( 𝐹 ∈ ( 𝐽 Homeo 𝐾 ) ∧ 𝐺 ∈ ( 𝐾 Homeo 𝐿 ) ) → ( 𝐺 ∘ 𝐹 ) ∈ ( 𝐽 Cn 𝐿 ) ) |
| 5 | cnvco | ⊢ ◡ ( 𝐺 ∘ 𝐹 ) = ( ◡ 𝐹 ∘ ◡ 𝐺 ) | |
| 6 | hmeocnvcn | ⊢ ( 𝐺 ∈ ( 𝐾 Homeo 𝐿 ) → ◡ 𝐺 ∈ ( 𝐿 Cn 𝐾 ) ) | |
| 7 | hmeocnvcn | ⊢ ( 𝐹 ∈ ( 𝐽 Homeo 𝐾 ) → ◡ 𝐹 ∈ ( 𝐾 Cn 𝐽 ) ) | |
| 8 | cnco | ⊢ ( ( ◡ 𝐺 ∈ ( 𝐿 Cn 𝐾 ) ∧ ◡ 𝐹 ∈ ( 𝐾 Cn 𝐽 ) ) → ( ◡ 𝐹 ∘ ◡ 𝐺 ) ∈ ( 𝐿 Cn 𝐽 ) ) | |
| 9 | 6 7 8 | syl2anr | ⊢ ( ( 𝐹 ∈ ( 𝐽 Homeo 𝐾 ) ∧ 𝐺 ∈ ( 𝐾 Homeo 𝐿 ) ) → ( ◡ 𝐹 ∘ ◡ 𝐺 ) ∈ ( 𝐿 Cn 𝐽 ) ) |
| 10 | 5 9 | eqeltrid | ⊢ ( ( 𝐹 ∈ ( 𝐽 Homeo 𝐾 ) ∧ 𝐺 ∈ ( 𝐾 Homeo 𝐿 ) ) → ◡ ( 𝐺 ∘ 𝐹 ) ∈ ( 𝐿 Cn 𝐽 ) ) |
| 11 | ishmeo | ⊢ ( ( 𝐺 ∘ 𝐹 ) ∈ ( 𝐽 Homeo 𝐿 ) ↔ ( ( 𝐺 ∘ 𝐹 ) ∈ ( 𝐽 Cn 𝐿 ) ∧ ◡ ( 𝐺 ∘ 𝐹 ) ∈ ( 𝐿 Cn 𝐽 ) ) ) | |
| 12 | 4 10 11 | sylanbrc | ⊢ ( ( 𝐹 ∈ ( 𝐽 Homeo 𝐾 ) ∧ 𝐺 ∈ ( 𝐾 Homeo 𝐿 ) ) → ( 𝐺 ∘ 𝐹 ) ∈ ( 𝐽 Homeo 𝐿 ) ) |