This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The property of being a sum of the sequence F in the topological commutative monoid G . (Contributed by Mario Carneiro, 2-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | eltsms.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| eltsms.j | ⊢ 𝐽 = ( TopOpen ‘ 𝐺 ) | ||
| eltsms.s | ⊢ 𝑆 = ( 𝒫 𝐴 ∩ Fin ) | ||
| eltsms.1 | ⊢ ( 𝜑 → 𝐺 ∈ CMnd ) | ||
| eltsms.2 | ⊢ ( 𝜑 → 𝐺 ∈ TopSp ) | ||
| eltsms.a | ⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) | ||
| eltsms.f | ⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ 𝐵 ) | ||
| tsmsi.3 | ⊢ ( 𝜑 → 𝐶 ∈ ( 𝐺 tsums 𝐹 ) ) | ||
| tsmsi.4 | ⊢ ( 𝜑 → 𝑈 ∈ 𝐽 ) | ||
| tsmsi.5 | ⊢ ( 𝜑 → 𝐶 ∈ 𝑈 ) | ||
| Assertion | tsmsi | ⊢ ( 𝜑 → ∃ 𝑧 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 ( 𝑧 ⊆ 𝑦 → ( 𝐺 Σg ( 𝐹 ↾ 𝑦 ) ) ∈ 𝑈 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eltsms.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| 2 | eltsms.j | ⊢ 𝐽 = ( TopOpen ‘ 𝐺 ) | |
| 3 | eltsms.s | ⊢ 𝑆 = ( 𝒫 𝐴 ∩ Fin ) | |
| 4 | eltsms.1 | ⊢ ( 𝜑 → 𝐺 ∈ CMnd ) | |
| 5 | eltsms.2 | ⊢ ( 𝜑 → 𝐺 ∈ TopSp ) | |
| 6 | eltsms.a | ⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) | |
| 7 | eltsms.f | ⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ 𝐵 ) | |
| 8 | tsmsi.3 | ⊢ ( 𝜑 → 𝐶 ∈ ( 𝐺 tsums 𝐹 ) ) | |
| 9 | tsmsi.4 | ⊢ ( 𝜑 → 𝑈 ∈ 𝐽 ) | |
| 10 | tsmsi.5 | ⊢ ( 𝜑 → 𝐶 ∈ 𝑈 ) | |
| 11 | eleq2 | ⊢ ( 𝑢 = 𝑈 → ( 𝐶 ∈ 𝑢 ↔ 𝐶 ∈ 𝑈 ) ) | |
| 12 | eleq2 | ⊢ ( 𝑢 = 𝑈 → ( ( 𝐺 Σg ( 𝐹 ↾ 𝑦 ) ) ∈ 𝑢 ↔ ( 𝐺 Σg ( 𝐹 ↾ 𝑦 ) ) ∈ 𝑈 ) ) | |
| 13 | 12 | imbi2d | ⊢ ( 𝑢 = 𝑈 → ( ( 𝑧 ⊆ 𝑦 → ( 𝐺 Σg ( 𝐹 ↾ 𝑦 ) ) ∈ 𝑢 ) ↔ ( 𝑧 ⊆ 𝑦 → ( 𝐺 Σg ( 𝐹 ↾ 𝑦 ) ) ∈ 𝑈 ) ) ) |
| 14 | 13 | rexralbidv | ⊢ ( 𝑢 = 𝑈 → ( ∃ 𝑧 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 ( 𝑧 ⊆ 𝑦 → ( 𝐺 Σg ( 𝐹 ↾ 𝑦 ) ) ∈ 𝑢 ) ↔ ∃ 𝑧 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 ( 𝑧 ⊆ 𝑦 → ( 𝐺 Σg ( 𝐹 ↾ 𝑦 ) ) ∈ 𝑈 ) ) ) |
| 15 | 11 14 | imbi12d | ⊢ ( 𝑢 = 𝑈 → ( ( 𝐶 ∈ 𝑢 → ∃ 𝑧 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 ( 𝑧 ⊆ 𝑦 → ( 𝐺 Σg ( 𝐹 ↾ 𝑦 ) ) ∈ 𝑢 ) ) ↔ ( 𝐶 ∈ 𝑈 → ∃ 𝑧 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 ( 𝑧 ⊆ 𝑦 → ( 𝐺 Σg ( 𝐹 ↾ 𝑦 ) ) ∈ 𝑈 ) ) ) ) |
| 16 | 1 2 3 4 5 6 7 | eltsms | ⊢ ( 𝜑 → ( 𝐶 ∈ ( 𝐺 tsums 𝐹 ) ↔ ( 𝐶 ∈ 𝐵 ∧ ∀ 𝑢 ∈ 𝐽 ( 𝐶 ∈ 𝑢 → ∃ 𝑧 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 ( 𝑧 ⊆ 𝑦 → ( 𝐺 Σg ( 𝐹 ↾ 𝑦 ) ) ∈ 𝑢 ) ) ) ) ) |
| 17 | 8 16 | mpbid | ⊢ ( 𝜑 → ( 𝐶 ∈ 𝐵 ∧ ∀ 𝑢 ∈ 𝐽 ( 𝐶 ∈ 𝑢 → ∃ 𝑧 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 ( 𝑧 ⊆ 𝑦 → ( 𝐺 Σg ( 𝐹 ↾ 𝑦 ) ) ∈ 𝑢 ) ) ) ) |
| 18 | 17 | simprd | ⊢ ( 𝜑 → ∀ 𝑢 ∈ 𝐽 ( 𝐶 ∈ 𝑢 → ∃ 𝑧 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 ( 𝑧 ⊆ 𝑦 → ( 𝐺 Σg ( 𝐹 ↾ 𝑦 ) ) ∈ 𝑢 ) ) ) |
| 19 | 15 18 9 | rspcdva | ⊢ ( 𝜑 → ( 𝐶 ∈ 𝑈 → ∃ 𝑧 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 ( 𝑧 ⊆ 𝑦 → ( 𝐺 Σg ( 𝐹 ↾ 𝑦 ) ) ∈ 𝑈 ) ) ) |
| 20 | 10 19 | mpd | ⊢ ( 𝜑 → ∃ 𝑧 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 ( 𝑧 ⊆ 𝑦 → ( 𝐺 Σg ( 𝐹 ↾ 𝑦 ) ) ∈ 𝑈 ) ) |