This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Write a group sum over a cartesian product as a double sum. (Contributed by Mario Carneiro, 28-Dec-2014) (Revised by AV, 9-Jun-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | gsumxp.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| gsumxp.z | ⊢ 0 = ( 0g ‘ 𝐺 ) | ||
| gsumxp.g | ⊢ ( 𝜑 → 𝐺 ∈ CMnd ) | ||
| gsumxp.a | ⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) | ||
| gsumxp.r | ⊢ ( 𝜑 → 𝐶 ∈ 𝑊 ) | ||
| gsumxp.f | ⊢ ( 𝜑 → 𝐹 : ( 𝐴 × 𝐶 ) ⟶ 𝐵 ) | ||
| gsumxp.w | ⊢ ( 𝜑 → 𝐹 finSupp 0 ) | ||
| Assertion | gsumxp | ⊢ ( 𝜑 → ( 𝐺 Σg 𝐹 ) = ( 𝐺 Σg ( 𝑗 ∈ 𝐴 ↦ ( 𝐺 Σg ( 𝑘 ∈ 𝐶 ↦ ( 𝑗 𝐹 𝑘 ) ) ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | gsumxp.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| 2 | gsumxp.z | ⊢ 0 = ( 0g ‘ 𝐺 ) | |
| 3 | gsumxp.g | ⊢ ( 𝜑 → 𝐺 ∈ CMnd ) | |
| 4 | gsumxp.a | ⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) | |
| 5 | gsumxp.r | ⊢ ( 𝜑 → 𝐶 ∈ 𝑊 ) | |
| 6 | gsumxp.f | ⊢ ( 𝜑 → 𝐹 : ( 𝐴 × 𝐶 ) ⟶ 𝐵 ) | |
| 7 | gsumxp.w | ⊢ ( 𝜑 → 𝐹 finSupp 0 ) | |
| 8 | 4 5 | xpexd | ⊢ ( 𝜑 → ( 𝐴 × 𝐶 ) ∈ V ) |
| 9 | relxp | ⊢ Rel ( 𝐴 × 𝐶 ) | |
| 10 | 9 | a1i | ⊢ ( 𝜑 → Rel ( 𝐴 × 𝐶 ) ) |
| 11 | dmxpss | ⊢ dom ( 𝐴 × 𝐶 ) ⊆ 𝐴 | |
| 12 | 11 | a1i | ⊢ ( 𝜑 → dom ( 𝐴 × 𝐶 ) ⊆ 𝐴 ) |
| 13 | 1 2 3 8 10 4 12 6 7 | gsum2d | ⊢ ( 𝜑 → ( 𝐺 Σg 𝐹 ) = ( 𝐺 Σg ( 𝑗 ∈ 𝐴 ↦ ( 𝐺 Σg ( 𝑘 ∈ ( ( 𝐴 × 𝐶 ) “ { 𝑗 } ) ↦ ( 𝑗 𝐹 𝑘 ) ) ) ) ) ) |
| 14 | df-ima | ⊢ ( ( 𝐴 × 𝐶 ) “ { 𝑗 } ) = ran ( ( 𝐴 × 𝐶 ) ↾ { 𝑗 } ) | |
| 15 | df-res | ⊢ ( ( 𝐴 × 𝐶 ) ↾ { 𝑗 } ) = ( ( 𝐴 × 𝐶 ) ∩ ( { 𝑗 } × V ) ) | |
| 16 | inxp | ⊢ ( ( 𝐴 × 𝐶 ) ∩ ( { 𝑗 } × V ) ) = ( ( 𝐴 ∩ { 𝑗 } ) × ( 𝐶 ∩ V ) ) | |
| 17 | 15 16 | eqtri | ⊢ ( ( 𝐴 × 𝐶 ) ↾ { 𝑗 } ) = ( ( 𝐴 ∩ { 𝑗 } ) × ( 𝐶 ∩ V ) ) |
| 18 | simpr | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝐴 ) → 𝑗 ∈ 𝐴 ) | |
| 19 | 18 | snssd | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝐴 ) → { 𝑗 } ⊆ 𝐴 ) |
| 20 | sseqin2 | ⊢ ( { 𝑗 } ⊆ 𝐴 ↔ ( 𝐴 ∩ { 𝑗 } ) = { 𝑗 } ) | |
| 21 | 19 20 | sylib | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝐴 ) → ( 𝐴 ∩ { 𝑗 } ) = { 𝑗 } ) |
| 22 | inv1 | ⊢ ( 𝐶 ∩ V ) = 𝐶 | |
| 23 | 22 | a1i | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝐴 ) → ( 𝐶 ∩ V ) = 𝐶 ) |
| 24 | 21 23 | xpeq12d | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝐴 ) → ( ( 𝐴 ∩ { 𝑗 } ) × ( 𝐶 ∩ V ) ) = ( { 𝑗 } × 𝐶 ) ) |
| 25 | 17 24 | eqtrid | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝐴 ) → ( ( 𝐴 × 𝐶 ) ↾ { 𝑗 } ) = ( { 𝑗 } × 𝐶 ) ) |
| 26 | 25 | rneqd | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝐴 ) → ran ( ( 𝐴 × 𝐶 ) ↾ { 𝑗 } ) = ran ( { 𝑗 } × 𝐶 ) ) |
| 27 | vex | ⊢ 𝑗 ∈ V | |
| 28 | 27 | snnz | ⊢ { 𝑗 } ≠ ∅ |
| 29 | rnxp | ⊢ ( { 𝑗 } ≠ ∅ → ran ( { 𝑗 } × 𝐶 ) = 𝐶 ) | |
| 30 | 28 29 | ax-mp | ⊢ ran ( { 𝑗 } × 𝐶 ) = 𝐶 |
| 31 | 26 30 | eqtrdi | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝐴 ) → ran ( ( 𝐴 × 𝐶 ) ↾ { 𝑗 } ) = 𝐶 ) |
| 32 | 14 31 | eqtrid | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝐴 ) → ( ( 𝐴 × 𝐶 ) “ { 𝑗 } ) = 𝐶 ) |
| 33 | 32 | mpteq1d | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝐴 ) → ( 𝑘 ∈ ( ( 𝐴 × 𝐶 ) “ { 𝑗 } ) ↦ ( 𝑗 𝐹 𝑘 ) ) = ( 𝑘 ∈ 𝐶 ↦ ( 𝑗 𝐹 𝑘 ) ) ) |
| 34 | 33 | oveq2d | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝐴 ) → ( 𝐺 Σg ( 𝑘 ∈ ( ( 𝐴 × 𝐶 ) “ { 𝑗 } ) ↦ ( 𝑗 𝐹 𝑘 ) ) ) = ( 𝐺 Σg ( 𝑘 ∈ 𝐶 ↦ ( 𝑗 𝐹 𝑘 ) ) ) ) |
| 35 | 34 | mpteq2dva | ⊢ ( 𝜑 → ( 𝑗 ∈ 𝐴 ↦ ( 𝐺 Σg ( 𝑘 ∈ ( ( 𝐴 × 𝐶 ) “ { 𝑗 } ) ↦ ( 𝑗 𝐹 𝑘 ) ) ) ) = ( 𝑗 ∈ 𝐴 ↦ ( 𝐺 Σg ( 𝑘 ∈ 𝐶 ↦ ( 𝑗 𝐹 𝑘 ) ) ) ) ) |
| 36 | 35 | oveq2d | ⊢ ( 𝜑 → ( 𝐺 Σg ( 𝑗 ∈ 𝐴 ↦ ( 𝐺 Σg ( 𝑘 ∈ ( ( 𝐴 × 𝐶 ) “ { 𝑗 } ) ↦ ( 𝑗 𝐹 𝑘 ) ) ) ) ) = ( 𝐺 Σg ( 𝑗 ∈ 𝐴 ↦ ( 𝐺 Σg ( 𝑘 ∈ 𝐶 ↦ ( 𝑗 𝐹 𝑘 ) ) ) ) ) ) |
| 37 | 13 36 | eqtrd | ⊢ ( 𝜑 → ( 𝐺 Σg 𝐹 ) = ( 𝐺 Σg ( 𝑗 ∈ 𝐴 ↦ ( 𝐺 Σg ( 𝑘 ∈ 𝐶 ↦ ( 𝑗 𝐹 𝑘 ) ) ) ) ) ) |