This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Subtraction of the identity from a group element. (Contributed by Mario Carneiro, 14-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | grpsubid.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| grpsubid.o | ⊢ 0 = ( 0g ‘ 𝐺 ) | ||
| grpsubid.m | ⊢ − = ( -g ‘ 𝐺 ) | ||
| Assertion | grpsubid1 | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ) → ( 𝑋 − 0 ) = 𝑋 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | grpsubid.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| 2 | grpsubid.o | ⊢ 0 = ( 0g ‘ 𝐺 ) | |
| 3 | grpsubid.m | ⊢ − = ( -g ‘ 𝐺 ) | |
| 4 | id | ⊢ ( 𝑋 ∈ 𝐵 → 𝑋 ∈ 𝐵 ) | |
| 5 | 1 2 | grpidcl | ⊢ ( 𝐺 ∈ Grp → 0 ∈ 𝐵 ) |
| 6 | eqid | ⊢ ( +g ‘ 𝐺 ) = ( +g ‘ 𝐺 ) | |
| 7 | eqid | ⊢ ( invg ‘ 𝐺 ) = ( invg ‘ 𝐺 ) | |
| 8 | 1 6 7 3 | grpsubval | ⊢ ( ( 𝑋 ∈ 𝐵 ∧ 0 ∈ 𝐵 ) → ( 𝑋 − 0 ) = ( 𝑋 ( +g ‘ 𝐺 ) ( ( invg ‘ 𝐺 ) ‘ 0 ) ) ) |
| 9 | 4 5 8 | syl2anr | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ) → ( 𝑋 − 0 ) = ( 𝑋 ( +g ‘ 𝐺 ) ( ( invg ‘ 𝐺 ) ‘ 0 ) ) ) |
| 10 | 2 7 | grpinvid | ⊢ ( 𝐺 ∈ Grp → ( ( invg ‘ 𝐺 ) ‘ 0 ) = 0 ) |
| 11 | 10 | adantr | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ) → ( ( invg ‘ 𝐺 ) ‘ 0 ) = 0 ) |
| 12 | 11 | oveq2d | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ) → ( 𝑋 ( +g ‘ 𝐺 ) ( ( invg ‘ 𝐺 ) ‘ 0 ) ) = ( 𝑋 ( +g ‘ 𝐺 ) 0 ) ) |
| 13 | 1 6 2 | grprid | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ) → ( 𝑋 ( +g ‘ 𝐺 ) 0 ) = 𝑋 ) |
| 14 | 9 12 13 | 3eqtrd | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ) → ( 𝑋 − 0 ) = 𝑋 ) |