This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Cancellation law for group subtraction. ( nncan analog.) (Contributed by NM, 7-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ablnncan.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| ablnncan.m | ⊢ − = ( -g ‘ 𝐺 ) | ||
| ablnncan.g | ⊢ ( 𝜑 → 𝐺 ∈ Abel ) | ||
| ablnncan.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) | ||
| ablnncan.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) | ||
| Assertion | ablnncan | ⊢ ( 𝜑 → ( 𝑋 − ( 𝑋 − 𝑌 ) ) = 𝑌 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ablnncan.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| 2 | ablnncan.m | ⊢ − = ( -g ‘ 𝐺 ) | |
| 3 | ablnncan.g | ⊢ ( 𝜑 → 𝐺 ∈ Abel ) | |
| 4 | ablnncan.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) | |
| 5 | ablnncan.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) | |
| 6 | eqid | ⊢ ( +g ‘ 𝐺 ) = ( +g ‘ 𝐺 ) | |
| 7 | 1 6 2 3 4 4 5 | ablsubsub | ⊢ ( 𝜑 → ( 𝑋 − ( 𝑋 − 𝑌 ) ) = ( ( 𝑋 − 𝑋 ) ( +g ‘ 𝐺 ) 𝑌 ) ) |
| 8 | ablgrp | ⊢ ( 𝐺 ∈ Abel → 𝐺 ∈ Grp ) | |
| 9 | 3 8 | syl | ⊢ ( 𝜑 → 𝐺 ∈ Grp ) |
| 10 | eqid | ⊢ ( 0g ‘ 𝐺 ) = ( 0g ‘ 𝐺 ) | |
| 11 | 1 10 2 | grpsubid | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ) → ( 𝑋 − 𝑋 ) = ( 0g ‘ 𝐺 ) ) |
| 12 | 9 4 11 | syl2anc | ⊢ ( 𝜑 → ( 𝑋 − 𝑋 ) = ( 0g ‘ 𝐺 ) ) |
| 13 | 12 | oveq1d | ⊢ ( 𝜑 → ( ( 𝑋 − 𝑋 ) ( +g ‘ 𝐺 ) 𝑌 ) = ( ( 0g ‘ 𝐺 ) ( +g ‘ 𝐺 ) 𝑌 ) ) |
| 14 | 1 6 10 | grplid | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑌 ∈ 𝐵 ) → ( ( 0g ‘ 𝐺 ) ( +g ‘ 𝐺 ) 𝑌 ) = 𝑌 ) |
| 15 | 9 5 14 | syl2anc | ⊢ ( 𝜑 → ( ( 0g ‘ 𝐺 ) ( +g ‘ 𝐺 ) 𝑌 ) = 𝑌 ) |
| 16 | 7 13 15 | 3eqtrd | ⊢ ( 𝜑 → ( 𝑋 − ( 𝑋 − 𝑌 ) ) = 𝑌 ) |