This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Double inverse law for groups. Lemma 2.2.1(c) of Herstein p. 55. (Contributed by NM, 31-Mar-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | grpinvinv.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| grpinvinv.n | ⊢ 𝑁 = ( invg ‘ 𝐺 ) | ||
| Assertion | grpinvinv | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ) → ( 𝑁 ‘ ( 𝑁 ‘ 𝑋 ) ) = 𝑋 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | grpinvinv.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| 2 | grpinvinv.n | ⊢ 𝑁 = ( invg ‘ 𝐺 ) | |
| 3 | 1 2 | grpinvcl | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ) → ( 𝑁 ‘ 𝑋 ) ∈ 𝐵 ) |
| 4 | eqid | ⊢ ( +g ‘ 𝐺 ) = ( +g ‘ 𝐺 ) | |
| 5 | eqid | ⊢ ( 0g ‘ 𝐺 ) = ( 0g ‘ 𝐺 ) | |
| 6 | 1 4 5 2 | grprinv | ⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑁 ‘ 𝑋 ) ∈ 𝐵 ) → ( ( 𝑁 ‘ 𝑋 ) ( +g ‘ 𝐺 ) ( 𝑁 ‘ ( 𝑁 ‘ 𝑋 ) ) ) = ( 0g ‘ 𝐺 ) ) |
| 7 | 3 6 | syldan | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ) → ( ( 𝑁 ‘ 𝑋 ) ( +g ‘ 𝐺 ) ( 𝑁 ‘ ( 𝑁 ‘ 𝑋 ) ) ) = ( 0g ‘ 𝐺 ) ) |
| 8 | 1 4 5 2 | grplinv | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ) → ( ( 𝑁 ‘ 𝑋 ) ( +g ‘ 𝐺 ) 𝑋 ) = ( 0g ‘ 𝐺 ) ) |
| 9 | 7 8 | eqtr4d | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ) → ( ( 𝑁 ‘ 𝑋 ) ( +g ‘ 𝐺 ) ( 𝑁 ‘ ( 𝑁 ‘ 𝑋 ) ) ) = ( ( 𝑁 ‘ 𝑋 ) ( +g ‘ 𝐺 ) 𝑋 ) ) |
| 10 | simpl | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ) → 𝐺 ∈ Grp ) | |
| 11 | 1 2 | grpinvcl | ⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑁 ‘ 𝑋 ) ∈ 𝐵 ) → ( 𝑁 ‘ ( 𝑁 ‘ 𝑋 ) ) ∈ 𝐵 ) |
| 12 | 3 11 | syldan | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ) → ( 𝑁 ‘ ( 𝑁 ‘ 𝑋 ) ) ∈ 𝐵 ) |
| 13 | simpr | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ) → 𝑋 ∈ 𝐵 ) | |
| 14 | 1 4 | grplcan | ⊢ ( ( 𝐺 ∈ Grp ∧ ( ( 𝑁 ‘ ( 𝑁 ‘ 𝑋 ) ) ∈ 𝐵 ∧ 𝑋 ∈ 𝐵 ∧ ( 𝑁 ‘ 𝑋 ) ∈ 𝐵 ) ) → ( ( ( 𝑁 ‘ 𝑋 ) ( +g ‘ 𝐺 ) ( 𝑁 ‘ ( 𝑁 ‘ 𝑋 ) ) ) = ( ( 𝑁 ‘ 𝑋 ) ( +g ‘ 𝐺 ) 𝑋 ) ↔ ( 𝑁 ‘ ( 𝑁 ‘ 𝑋 ) ) = 𝑋 ) ) |
| 15 | 10 12 13 3 14 | syl13anc | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ) → ( ( ( 𝑁 ‘ 𝑋 ) ( +g ‘ 𝐺 ) ( 𝑁 ‘ ( 𝑁 ‘ 𝑋 ) ) ) = ( ( 𝑁 ‘ 𝑋 ) ( +g ‘ 𝐺 ) 𝑋 ) ↔ ( 𝑁 ‘ ( 𝑁 ‘ 𝑋 ) ) = 𝑋 ) ) |
| 16 | 9 15 | mpbid | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ) → ( 𝑁 ‘ ( 𝑁 ‘ 𝑋 ) ) = 𝑋 ) |