This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A subgroup is a nonempty subset of the group closed under subtraction. (Contributed by Mario Carneiro, 17-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | issubg4.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| issubg4.p | ⊢ − = ( -g ‘ 𝐺 ) | ||
| Assertion | issubg4 | ⊢ ( 𝐺 ∈ Grp → ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ↔ ( 𝑆 ⊆ 𝐵 ∧ 𝑆 ≠ ∅ ∧ ∀ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 ( 𝑥 − 𝑦 ) ∈ 𝑆 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | issubg4.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| 2 | issubg4.p | ⊢ − = ( -g ‘ 𝐺 ) | |
| 3 | 1 | subgss | ⊢ ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) → 𝑆 ⊆ 𝐵 ) |
| 4 | eqid | ⊢ ( 0g ‘ 𝐺 ) = ( 0g ‘ 𝐺 ) | |
| 5 | 4 | subg0cl | ⊢ ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) → ( 0g ‘ 𝐺 ) ∈ 𝑆 ) |
| 6 | 5 | ne0d | ⊢ ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) → 𝑆 ≠ ∅ ) |
| 7 | 2 | subgsubcl | ⊢ ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ) → ( 𝑥 − 𝑦 ) ∈ 𝑆 ) |
| 8 | 7 | 3expb | ⊢ ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ ( 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ) ) → ( 𝑥 − 𝑦 ) ∈ 𝑆 ) |
| 9 | 8 | ralrimivva | ⊢ ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) → ∀ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 ( 𝑥 − 𝑦 ) ∈ 𝑆 ) |
| 10 | 3 6 9 | 3jca | ⊢ ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) → ( 𝑆 ⊆ 𝐵 ∧ 𝑆 ≠ ∅ ∧ ∀ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 ( 𝑥 − 𝑦 ) ∈ 𝑆 ) ) |
| 11 | simplrl | ⊢ ( ( ( 𝐺 ∈ Grp ∧ ( 𝑆 ⊆ 𝐵 ∧ 𝑆 ≠ ∅ ) ) ∧ ∀ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 ( 𝑥 − 𝑦 ) ∈ 𝑆 ) → 𝑆 ⊆ 𝐵 ) | |
| 12 | simplrr | ⊢ ( ( ( 𝐺 ∈ Grp ∧ ( 𝑆 ⊆ 𝐵 ∧ 𝑆 ≠ ∅ ) ) ∧ ∀ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 ( 𝑥 − 𝑦 ) ∈ 𝑆 ) → 𝑆 ≠ ∅ ) | |
| 13 | oveq1 | ⊢ ( 𝑥 = ( 0g ‘ 𝐺 ) → ( 𝑥 − 𝑦 ) = ( ( 0g ‘ 𝐺 ) − 𝑦 ) ) | |
| 14 | 13 | eleq1d | ⊢ ( 𝑥 = ( 0g ‘ 𝐺 ) → ( ( 𝑥 − 𝑦 ) ∈ 𝑆 ↔ ( ( 0g ‘ 𝐺 ) − 𝑦 ) ∈ 𝑆 ) ) |
| 15 | 14 | ralbidv | ⊢ ( 𝑥 = ( 0g ‘ 𝐺 ) → ( ∀ 𝑦 ∈ 𝑆 ( 𝑥 − 𝑦 ) ∈ 𝑆 ↔ ∀ 𝑦 ∈ 𝑆 ( ( 0g ‘ 𝐺 ) − 𝑦 ) ∈ 𝑆 ) ) |
| 16 | simpr | ⊢ ( ( ( 𝐺 ∈ Grp ∧ ( 𝑆 ⊆ 𝐵 ∧ 𝑆 ≠ ∅ ) ) ∧ ∀ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 ( 𝑥 − 𝑦 ) ∈ 𝑆 ) → ∀ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 ( 𝑥 − 𝑦 ) ∈ 𝑆 ) | |
| 17 | simprr | ⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑆 ⊆ 𝐵 ∧ 𝑆 ≠ ∅ ) ) → 𝑆 ≠ ∅ ) | |
| 18 | r19.2z | ⊢ ( ( 𝑆 ≠ ∅ ∧ ∀ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 ( 𝑥 − 𝑦 ) ∈ 𝑆 ) → ∃ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 ( 𝑥 − 𝑦 ) ∈ 𝑆 ) | |
| 19 | 17 18 | sylan | ⊢ ( ( ( 𝐺 ∈ Grp ∧ ( 𝑆 ⊆ 𝐵 ∧ 𝑆 ≠ ∅ ) ) ∧ ∀ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 ( 𝑥 − 𝑦 ) ∈ 𝑆 ) → ∃ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 ( 𝑥 − 𝑦 ) ∈ 𝑆 ) |
| 20 | oveq2 | ⊢ ( 𝑦 = 𝑥 → ( 𝑥 − 𝑦 ) = ( 𝑥 − 𝑥 ) ) | |
| 21 | 20 | eleq1d | ⊢ ( 𝑦 = 𝑥 → ( ( 𝑥 − 𝑦 ) ∈ 𝑆 ↔ ( 𝑥 − 𝑥 ) ∈ 𝑆 ) ) |
| 22 | 21 | rspcv | ⊢ ( 𝑥 ∈ 𝑆 → ( ∀ 𝑦 ∈ 𝑆 ( 𝑥 − 𝑦 ) ∈ 𝑆 → ( 𝑥 − 𝑥 ) ∈ 𝑆 ) ) |
| 23 | 22 | adantl | ⊢ ( ( ( 𝐺 ∈ Grp ∧ ( 𝑆 ⊆ 𝐵 ∧ 𝑆 ≠ ∅ ) ) ∧ 𝑥 ∈ 𝑆 ) → ( ∀ 𝑦 ∈ 𝑆 ( 𝑥 − 𝑦 ) ∈ 𝑆 → ( 𝑥 − 𝑥 ) ∈ 𝑆 ) ) |
| 24 | simprl | ⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑆 ⊆ 𝐵 ∧ 𝑆 ≠ ∅ ) ) → 𝑆 ⊆ 𝐵 ) | |
| 25 | 24 | sselda | ⊢ ( ( ( 𝐺 ∈ Grp ∧ ( 𝑆 ⊆ 𝐵 ∧ 𝑆 ≠ ∅ ) ) ∧ 𝑥 ∈ 𝑆 ) → 𝑥 ∈ 𝐵 ) |
| 26 | 1 4 2 | grpsubid | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑥 ∈ 𝐵 ) → ( 𝑥 − 𝑥 ) = ( 0g ‘ 𝐺 ) ) |
| 27 | 26 | adantlr | ⊢ ( ( ( 𝐺 ∈ Grp ∧ ( 𝑆 ⊆ 𝐵 ∧ 𝑆 ≠ ∅ ) ) ∧ 𝑥 ∈ 𝐵 ) → ( 𝑥 − 𝑥 ) = ( 0g ‘ 𝐺 ) ) |
| 28 | 25 27 | syldan | ⊢ ( ( ( 𝐺 ∈ Grp ∧ ( 𝑆 ⊆ 𝐵 ∧ 𝑆 ≠ ∅ ) ) ∧ 𝑥 ∈ 𝑆 ) → ( 𝑥 − 𝑥 ) = ( 0g ‘ 𝐺 ) ) |
| 29 | 28 | eleq1d | ⊢ ( ( ( 𝐺 ∈ Grp ∧ ( 𝑆 ⊆ 𝐵 ∧ 𝑆 ≠ ∅ ) ) ∧ 𝑥 ∈ 𝑆 ) → ( ( 𝑥 − 𝑥 ) ∈ 𝑆 ↔ ( 0g ‘ 𝐺 ) ∈ 𝑆 ) ) |
| 30 | 23 29 | sylibd | ⊢ ( ( ( 𝐺 ∈ Grp ∧ ( 𝑆 ⊆ 𝐵 ∧ 𝑆 ≠ ∅ ) ) ∧ 𝑥 ∈ 𝑆 ) → ( ∀ 𝑦 ∈ 𝑆 ( 𝑥 − 𝑦 ) ∈ 𝑆 → ( 0g ‘ 𝐺 ) ∈ 𝑆 ) ) |
| 31 | 30 | rexlimdva | ⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑆 ⊆ 𝐵 ∧ 𝑆 ≠ ∅ ) ) → ( ∃ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 ( 𝑥 − 𝑦 ) ∈ 𝑆 → ( 0g ‘ 𝐺 ) ∈ 𝑆 ) ) |
| 32 | 31 | imp | ⊢ ( ( ( 𝐺 ∈ Grp ∧ ( 𝑆 ⊆ 𝐵 ∧ 𝑆 ≠ ∅ ) ) ∧ ∃ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 ( 𝑥 − 𝑦 ) ∈ 𝑆 ) → ( 0g ‘ 𝐺 ) ∈ 𝑆 ) |
| 33 | 19 32 | syldan | ⊢ ( ( ( 𝐺 ∈ Grp ∧ ( 𝑆 ⊆ 𝐵 ∧ 𝑆 ≠ ∅ ) ) ∧ ∀ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 ( 𝑥 − 𝑦 ) ∈ 𝑆 ) → ( 0g ‘ 𝐺 ) ∈ 𝑆 ) |
| 34 | 15 16 33 | rspcdva | ⊢ ( ( ( 𝐺 ∈ Grp ∧ ( 𝑆 ⊆ 𝐵 ∧ 𝑆 ≠ ∅ ) ) ∧ ∀ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 ( 𝑥 − 𝑦 ) ∈ 𝑆 ) → ∀ 𝑦 ∈ 𝑆 ( ( 0g ‘ 𝐺 ) − 𝑦 ) ∈ 𝑆 ) |
| 35 | 1 4 | grpidcl | ⊢ ( 𝐺 ∈ Grp → ( 0g ‘ 𝐺 ) ∈ 𝐵 ) |
| 36 | 35 | ad2antrr | ⊢ ( ( ( 𝐺 ∈ Grp ∧ ( 𝑆 ⊆ 𝐵 ∧ 𝑆 ≠ ∅ ) ) ∧ 𝑦 ∈ 𝑆 ) → ( 0g ‘ 𝐺 ) ∈ 𝐵 ) |
| 37 | 24 | sselda | ⊢ ( ( ( 𝐺 ∈ Grp ∧ ( 𝑆 ⊆ 𝐵 ∧ 𝑆 ≠ ∅ ) ) ∧ 𝑦 ∈ 𝑆 ) → 𝑦 ∈ 𝐵 ) |
| 38 | eqid | ⊢ ( +g ‘ 𝐺 ) = ( +g ‘ 𝐺 ) | |
| 39 | eqid | ⊢ ( invg ‘ 𝐺 ) = ( invg ‘ 𝐺 ) | |
| 40 | 1 38 39 2 | grpsubval | ⊢ ( ( ( 0g ‘ 𝐺 ) ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) → ( ( 0g ‘ 𝐺 ) − 𝑦 ) = ( ( 0g ‘ 𝐺 ) ( +g ‘ 𝐺 ) ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ) ) |
| 41 | 36 37 40 | syl2anc | ⊢ ( ( ( 𝐺 ∈ Grp ∧ ( 𝑆 ⊆ 𝐵 ∧ 𝑆 ≠ ∅ ) ) ∧ 𝑦 ∈ 𝑆 ) → ( ( 0g ‘ 𝐺 ) − 𝑦 ) = ( ( 0g ‘ 𝐺 ) ( +g ‘ 𝐺 ) ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ) ) |
| 42 | simpll | ⊢ ( ( ( 𝐺 ∈ Grp ∧ ( 𝑆 ⊆ 𝐵 ∧ 𝑆 ≠ ∅ ) ) ∧ 𝑦 ∈ 𝑆 ) → 𝐺 ∈ Grp ) | |
| 43 | 1 39 | grpinvcl | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑦 ∈ 𝐵 ) → ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ∈ 𝐵 ) |
| 44 | 42 37 43 | syl2anc | ⊢ ( ( ( 𝐺 ∈ Grp ∧ ( 𝑆 ⊆ 𝐵 ∧ 𝑆 ≠ ∅ ) ) ∧ 𝑦 ∈ 𝑆 ) → ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ∈ 𝐵 ) |
| 45 | 1 38 4 | grplid | ⊢ ( ( 𝐺 ∈ Grp ∧ ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ∈ 𝐵 ) → ( ( 0g ‘ 𝐺 ) ( +g ‘ 𝐺 ) ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ) = ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ) |
| 46 | 42 44 45 | syl2anc | ⊢ ( ( ( 𝐺 ∈ Grp ∧ ( 𝑆 ⊆ 𝐵 ∧ 𝑆 ≠ ∅ ) ) ∧ 𝑦 ∈ 𝑆 ) → ( ( 0g ‘ 𝐺 ) ( +g ‘ 𝐺 ) ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ) = ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ) |
| 47 | 41 46 | eqtrd | ⊢ ( ( ( 𝐺 ∈ Grp ∧ ( 𝑆 ⊆ 𝐵 ∧ 𝑆 ≠ ∅ ) ) ∧ 𝑦 ∈ 𝑆 ) → ( ( 0g ‘ 𝐺 ) − 𝑦 ) = ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ) |
| 48 | 47 | eleq1d | ⊢ ( ( ( 𝐺 ∈ Grp ∧ ( 𝑆 ⊆ 𝐵 ∧ 𝑆 ≠ ∅ ) ) ∧ 𝑦 ∈ 𝑆 ) → ( ( ( 0g ‘ 𝐺 ) − 𝑦 ) ∈ 𝑆 ↔ ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ∈ 𝑆 ) ) |
| 49 | 48 | ralbidva | ⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑆 ⊆ 𝐵 ∧ 𝑆 ≠ ∅ ) ) → ( ∀ 𝑦 ∈ 𝑆 ( ( 0g ‘ 𝐺 ) − 𝑦 ) ∈ 𝑆 ↔ ∀ 𝑦 ∈ 𝑆 ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ∈ 𝑆 ) ) |
| 50 | 49 | adantr | ⊢ ( ( ( 𝐺 ∈ Grp ∧ ( 𝑆 ⊆ 𝐵 ∧ 𝑆 ≠ ∅ ) ) ∧ ∀ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 ( 𝑥 − 𝑦 ) ∈ 𝑆 ) → ( ∀ 𝑦 ∈ 𝑆 ( ( 0g ‘ 𝐺 ) − 𝑦 ) ∈ 𝑆 ↔ ∀ 𝑦 ∈ 𝑆 ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ∈ 𝑆 ) ) |
| 51 | 34 50 | mpbid | ⊢ ( ( ( 𝐺 ∈ Grp ∧ ( 𝑆 ⊆ 𝐵 ∧ 𝑆 ≠ ∅ ) ) ∧ ∀ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 ( 𝑥 − 𝑦 ) ∈ 𝑆 ) → ∀ 𝑦 ∈ 𝑆 ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ∈ 𝑆 ) |
| 52 | fveq2 | ⊢ ( 𝑦 = 𝑧 → ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) = ( ( invg ‘ 𝐺 ) ‘ 𝑧 ) ) | |
| 53 | 52 | eleq1d | ⊢ ( 𝑦 = 𝑧 → ( ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ∈ 𝑆 ↔ ( ( invg ‘ 𝐺 ) ‘ 𝑧 ) ∈ 𝑆 ) ) |
| 54 | 53 | rspccva | ⊢ ( ( ∀ 𝑦 ∈ 𝑆 ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ∈ 𝑆 ∧ 𝑧 ∈ 𝑆 ) → ( ( invg ‘ 𝐺 ) ‘ 𝑧 ) ∈ 𝑆 ) |
| 55 | 54 | ad2ant2l | ⊢ ( ( ( ( 𝐺 ∈ Grp ∧ ( 𝑆 ⊆ 𝐵 ∧ 𝑆 ≠ ∅ ) ) ∧ ∀ 𝑦 ∈ 𝑆 ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ∈ 𝑆 ) ∧ ( 𝑥 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆 ) ) → ( ( invg ‘ 𝐺 ) ‘ 𝑧 ) ∈ 𝑆 ) |
| 56 | oveq2 | ⊢ ( 𝑦 = ( ( invg ‘ 𝐺 ) ‘ 𝑧 ) → ( 𝑥 − 𝑦 ) = ( 𝑥 − ( ( invg ‘ 𝐺 ) ‘ 𝑧 ) ) ) | |
| 57 | 56 | eleq1d | ⊢ ( 𝑦 = ( ( invg ‘ 𝐺 ) ‘ 𝑧 ) → ( ( 𝑥 − 𝑦 ) ∈ 𝑆 ↔ ( 𝑥 − ( ( invg ‘ 𝐺 ) ‘ 𝑧 ) ) ∈ 𝑆 ) ) |
| 58 | 57 | rspcv | ⊢ ( ( ( invg ‘ 𝐺 ) ‘ 𝑧 ) ∈ 𝑆 → ( ∀ 𝑦 ∈ 𝑆 ( 𝑥 − 𝑦 ) ∈ 𝑆 → ( 𝑥 − ( ( invg ‘ 𝐺 ) ‘ 𝑧 ) ) ∈ 𝑆 ) ) |
| 59 | 55 58 | syl | ⊢ ( ( ( ( 𝐺 ∈ Grp ∧ ( 𝑆 ⊆ 𝐵 ∧ 𝑆 ≠ ∅ ) ) ∧ ∀ 𝑦 ∈ 𝑆 ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ∈ 𝑆 ) ∧ ( 𝑥 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆 ) ) → ( ∀ 𝑦 ∈ 𝑆 ( 𝑥 − 𝑦 ) ∈ 𝑆 → ( 𝑥 − ( ( invg ‘ 𝐺 ) ‘ 𝑧 ) ) ∈ 𝑆 ) ) |
| 60 | simplll | ⊢ ( ( ( ( 𝐺 ∈ Grp ∧ ( 𝑆 ⊆ 𝐵 ∧ 𝑆 ≠ ∅ ) ) ∧ ∀ 𝑦 ∈ 𝑆 ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ∈ 𝑆 ) ∧ ( 𝑥 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆 ) ) → 𝐺 ∈ Grp ) | |
| 61 | simplrl | ⊢ ( ( ( 𝐺 ∈ Grp ∧ ( 𝑆 ⊆ 𝐵 ∧ 𝑆 ≠ ∅ ) ) ∧ ∀ 𝑦 ∈ 𝑆 ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ∈ 𝑆 ) → 𝑆 ⊆ 𝐵 ) | |
| 62 | 61 | adantr | ⊢ ( ( ( ( 𝐺 ∈ Grp ∧ ( 𝑆 ⊆ 𝐵 ∧ 𝑆 ≠ ∅ ) ) ∧ ∀ 𝑦 ∈ 𝑆 ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ∈ 𝑆 ) ∧ ( 𝑥 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆 ) ) → 𝑆 ⊆ 𝐵 ) |
| 63 | simprl | ⊢ ( ( ( ( 𝐺 ∈ Grp ∧ ( 𝑆 ⊆ 𝐵 ∧ 𝑆 ≠ ∅ ) ) ∧ ∀ 𝑦 ∈ 𝑆 ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ∈ 𝑆 ) ∧ ( 𝑥 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆 ) ) → 𝑥 ∈ 𝑆 ) | |
| 64 | 62 63 | sseldd | ⊢ ( ( ( ( 𝐺 ∈ Grp ∧ ( 𝑆 ⊆ 𝐵 ∧ 𝑆 ≠ ∅ ) ) ∧ ∀ 𝑦 ∈ 𝑆 ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ∈ 𝑆 ) ∧ ( 𝑥 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆 ) ) → 𝑥 ∈ 𝐵 ) |
| 65 | simprr | ⊢ ( ( ( ( 𝐺 ∈ Grp ∧ ( 𝑆 ⊆ 𝐵 ∧ 𝑆 ≠ ∅ ) ) ∧ ∀ 𝑦 ∈ 𝑆 ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ∈ 𝑆 ) ∧ ( 𝑥 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆 ) ) → 𝑧 ∈ 𝑆 ) | |
| 66 | 62 65 | sseldd | ⊢ ( ( ( ( 𝐺 ∈ Grp ∧ ( 𝑆 ⊆ 𝐵 ∧ 𝑆 ≠ ∅ ) ) ∧ ∀ 𝑦 ∈ 𝑆 ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ∈ 𝑆 ) ∧ ( 𝑥 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆 ) ) → 𝑧 ∈ 𝐵 ) |
| 67 | 1 38 2 39 60 64 66 | grpsubinv | ⊢ ( ( ( ( 𝐺 ∈ Grp ∧ ( 𝑆 ⊆ 𝐵 ∧ 𝑆 ≠ ∅ ) ) ∧ ∀ 𝑦 ∈ 𝑆 ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ∈ 𝑆 ) ∧ ( 𝑥 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆 ) ) → ( 𝑥 − ( ( invg ‘ 𝐺 ) ‘ 𝑧 ) ) = ( 𝑥 ( +g ‘ 𝐺 ) 𝑧 ) ) |
| 68 | 67 | eleq1d | ⊢ ( ( ( ( 𝐺 ∈ Grp ∧ ( 𝑆 ⊆ 𝐵 ∧ 𝑆 ≠ ∅ ) ) ∧ ∀ 𝑦 ∈ 𝑆 ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ∈ 𝑆 ) ∧ ( 𝑥 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆 ) ) → ( ( 𝑥 − ( ( invg ‘ 𝐺 ) ‘ 𝑧 ) ) ∈ 𝑆 ↔ ( 𝑥 ( +g ‘ 𝐺 ) 𝑧 ) ∈ 𝑆 ) ) |
| 69 | 59 68 | sylibd | ⊢ ( ( ( ( 𝐺 ∈ Grp ∧ ( 𝑆 ⊆ 𝐵 ∧ 𝑆 ≠ ∅ ) ) ∧ ∀ 𝑦 ∈ 𝑆 ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ∈ 𝑆 ) ∧ ( 𝑥 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆 ) ) → ( ∀ 𝑦 ∈ 𝑆 ( 𝑥 − 𝑦 ) ∈ 𝑆 → ( 𝑥 ( +g ‘ 𝐺 ) 𝑧 ) ∈ 𝑆 ) ) |
| 70 | 69 | anassrs | ⊢ ( ( ( ( ( 𝐺 ∈ Grp ∧ ( 𝑆 ⊆ 𝐵 ∧ 𝑆 ≠ ∅ ) ) ∧ ∀ 𝑦 ∈ 𝑆 ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ∈ 𝑆 ) ∧ 𝑥 ∈ 𝑆 ) ∧ 𝑧 ∈ 𝑆 ) → ( ∀ 𝑦 ∈ 𝑆 ( 𝑥 − 𝑦 ) ∈ 𝑆 → ( 𝑥 ( +g ‘ 𝐺 ) 𝑧 ) ∈ 𝑆 ) ) |
| 71 | 70 | ralrimdva | ⊢ ( ( ( ( 𝐺 ∈ Grp ∧ ( 𝑆 ⊆ 𝐵 ∧ 𝑆 ≠ ∅ ) ) ∧ ∀ 𝑦 ∈ 𝑆 ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ∈ 𝑆 ) ∧ 𝑥 ∈ 𝑆 ) → ( ∀ 𝑦 ∈ 𝑆 ( 𝑥 − 𝑦 ) ∈ 𝑆 → ∀ 𝑧 ∈ 𝑆 ( 𝑥 ( +g ‘ 𝐺 ) 𝑧 ) ∈ 𝑆 ) ) |
| 72 | 71 | ralimdva | ⊢ ( ( ( 𝐺 ∈ Grp ∧ ( 𝑆 ⊆ 𝐵 ∧ 𝑆 ≠ ∅ ) ) ∧ ∀ 𝑦 ∈ 𝑆 ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ∈ 𝑆 ) → ( ∀ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 ( 𝑥 − 𝑦 ) ∈ 𝑆 → ∀ 𝑥 ∈ 𝑆 ∀ 𝑧 ∈ 𝑆 ( 𝑥 ( +g ‘ 𝐺 ) 𝑧 ) ∈ 𝑆 ) ) |
| 73 | 72 | impancom | ⊢ ( ( ( 𝐺 ∈ Grp ∧ ( 𝑆 ⊆ 𝐵 ∧ 𝑆 ≠ ∅ ) ) ∧ ∀ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 ( 𝑥 − 𝑦 ) ∈ 𝑆 ) → ( ∀ 𝑦 ∈ 𝑆 ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ∈ 𝑆 → ∀ 𝑥 ∈ 𝑆 ∀ 𝑧 ∈ 𝑆 ( 𝑥 ( +g ‘ 𝐺 ) 𝑧 ) ∈ 𝑆 ) ) |
| 74 | 51 73 | mpd | ⊢ ( ( ( 𝐺 ∈ Grp ∧ ( 𝑆 ⊆ 𝐵 ∧ 𝑆 ≠ ∅ ) ) ∧ ∀ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 ( 𝑥 − 𝑦 ) ∈ 𝑆 ) → ∀ 𝑥 ∈ 𝑆 ∀ 𝑧 ∈ 𝑆 ( 𝑥 ( +g ‘ 𝐺 ) 𝑧 ) ∈ 𝑆 ) |
| 75 | oveq1 | ⊢ ( 𝑥 = 𝑦 → ( 𝑥 ( +g ‘ 𝐺 ) 𝑧 ) = ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) ) | |
| 76 | 75 | eleq1d | ⊢ ( 𝑥 = 𝑦 → ( ( 𝑥 ( +g ‘ 𝐺 ) 𝑧 ) ∈ 𝑆 ↔ ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) ∈ 𝑆 ) ) |
| 77 | 76 | ralbidv | ⊢ ( 𝑥 = 𝑦 → ( ∀ 𝑧 ∈ 𝑆 ( 𝑥 ( +g ‘ 𝐺 ) 𝑧 ) ∈ 𝑆 ↔ ∀ 𝑧 ∈ 𝑆 ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) ∈ 𝑆 ) ) |
| 78 | 77 | cbvralvw | ⊢ ( ∀ 𝑥 ∈ 𝑆 ∀ 𝑧 ∈ 𝑆 ( 𝑥 ( +g ‘ 𝐺 ) 𝑧 ) ∈ 𝑆 ↔ ∀ 𝑦 ∈ 𝑆 ∀ 𝑧 ∈ 𝑆 ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) ∈ 𝑆 ) |
| 79 | 74 78 | sylib | ⊢ ( ( ( 𝐺 ∈ Grp ∧ ( 𝑆 ⊆ 𝐵 ∧ 𝑆 ≠ ∅ ) ) ∧ ∀ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 ( 𝑥 − 𝑦 ) ∈ 𝑆 ) → ∀ 𝑦 ∈ 𝑆 ∀ 𝑧 ∈ 𝑆 ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) ∈ 𝑆 ) |
| 80 | r19.26 | ⊢ ( ∀ 𝑦 ∈ 𝑆 ( ∀ 𝑧 ∈ 𝑆 ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) ∈ 𝑆 ∧ ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ∈ 𝑆 ) ↔ ( ∀ 𝑦 ∈ 𝑆 ∀ 𝑧 ∈ 𝑆 ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) ∈ 𝑆 ∧ ∀ 𝑦 ∈ 𝑆 ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ∈ 𝑆 ) ) | |
| 81 | 79 51 80 | sylanbrc | ⊢ ( ( ( 𝐺 ∈ Grp ∧ ( 𝑆 ⊆ 𝐵 ∧ 𝑆 ≠ ∅ ) ) ∧ ∀ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 ( 𝑥 − 𝑦 ) ∈ 𝑆 ) → ∀ 𝑦 ∈ 𝑆 ( ∀ 𝑧 ∈ 𝑆 ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) ∈ 𝑆 ∧ ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ∈ 𝑆 ) ) |
| 82 | 11 12 81 | 3jca | ⊢ ( ( ( 𝐺 ∈ Grp ∧ ( 𝑆 ⊆ 𝐵 ∧ 𝑆 ≠ ∅ ) ) ∧ ∀ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 ( 𝑥 − 𝑦 ) ∈ 𝑆 ) → ( 𝑆 ⊆ 𝐵 ∧ 𝑆 ≠ ∅ ∧ ∀ 𝑦 ∈ 𝑆 ( ∀ 𝑧 ∈ 𝑆 ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) ∈ 𝑆 ∧ ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ∈ 𝑆 ) ) ) |
| 83 | 82 | exp42 | ⊢ ( 𝐺 ∈ Grp → ( 𝑆 ⊆ 𝐵 → ( 𝑆 ≠ ∅ → ( ∀ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 ( 𝑥 − 𝑦 ) ∈ 𝑆 → ( 𝑆 ⊆ 𝐵 ∧ 𝑆 ≠ ∅ ∧ ∀ 𝑦 ∈ 𝑆 ( ∀ 𝑧 ∈ 𝑆 ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) ∈ 𝑆 ∧ ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ∈ 𝑆 ) ) ) ) ) ) |
| 84 | 83 | 3impd | ⊢ ( 𝐺 ∈ Grp → ( ( 𝑆 ⊆ 𝐵 ∧ 𝑆 ≠ ∅ ∧ ∀ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 ( 𝑥 − 𝑦 ) ∈ 𝑆 ) → ( 𝑆 ⊆ 𝐵 ∧ 𝑆 ≠ ∅ ∧ ∀ 𝑦 ∈ 𝑆 ( ∀ 𝑧 ∈ 𝑆 ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) ∈ 𝑆 ∧ ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ∈ 𝑆 ) ) ) ) |
| 85 | 1 38 39 | issubg2 | ⊢ ( 𝐺 ∈ Grp → ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ↔ ( 𝑆 ⊆ 𝐵 ∧ 𝑆 ≠ ∅ ∧ ∀ 𝑦 ∈ 𝑆 ( ∀ 𝑧 ∈ 𝑆 ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) ∈ 𝑆 ∧ ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ∈ 𝑆 ) ) ) ) |
| 86 | 84 85 | sylibrd | ⊢ ( 𝐺 ∈ Grp → ( ( 𝑆 ⊆ 𝐵 ∧ 𝑆 ≠ ∅ ∧ ∀ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 ( 𝑥 − 𝑦 ) ∈ 𝑆 ) → 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ) ) |
| 87 | 10 86 | impbid2 | ⊢ ( 𝐺 ∈ Grp → ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ↔ ( 𝑆 ⊆ 𝐵 ∧ 𝑆 ≠ ∅ ∧ ∀ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 ( 𝑥 − 𝑦 ) ∈ 𝑆 ) ) ) |