This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The identity component is a subset of any open subgroup. (Contributed by Mario Carneiro, 17-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | tgpconncomp.x | ⊢ 𝑋 = ( Base ‘ 𝐺 ) | |
| tgpconncomp.z | ⊢ 0 = ( 0g ‘ 𝐺 ) | ||
| tgpconncomp.j | ⊢ 𝐽 = ( TopOpen ‘ 𝐺 ) | ||
| tgpconncomp.s | ⊢ 𝑆 = ∪ { 𝑥 ∈ 𝒫 𝑋 ∣ ( 0 ∈ 𝑥 ∧ ( 𝐽 ↾t 𝑥 ) ∈ Conn ) } | ||
| Assertion | tgpconncompss | ⊢ ( ( 𝐺 ∈ TopGrp ∧ 𝑇 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑇 ∈ 𝐽 ) → 𝑆 ⊆ 𝑇 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tgpconncomp.x | ⊢ 𝑋 = ( Base ‘ 𝐺 ) | |
| 2 | tgpconncomp.z | ⊢ 0 = ( 0g ‘ 𝐺 ) | |
| 3 | tgpconncomp.j | ⊢ 𝐽 = ( TopOpen ‘ 𝐺 ) | |
| 4 | tgpconncomp.s | ⊢ 𝑆 = ∪ { 𝑥 ∈ 𝒫 𝑋 ∣ ( 0 ∈ 𝑥 ∧ ( 𝐽 ↾t 𝑥 ) ∈ Conn ) } | |
| 5 | 3 1 | tgptopon | ⊢ ( 𝐺 ∈ TopGrp → 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) |
| 6 | 5 | 3ad2ant1 | ⊢ ( ( 𝐺 ∈ TopGrp ∧ 𝑇 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑇 ∈ 𝐽 ) → 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) |
| 7 | simp3 | ⊢ ( ( 𝐺 ∈ TopGrp ∧ 𝑇 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑇 ∈ 𝐽 ) → 𝑇 ∈ 𝐽 ) | |
| 8 | 3 | opnsubg | ⊢ ( ( 𝐺 ∈ TopGrp ∧ 𝑇 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑇 ∈ 𝐽 ) → 𝑇 ∈ ( Clsd ‘ 𝐽 ) ) |
| 9 | 7 8 | elind | ⊢ ( ( 𝐺 ∈ TopGrp ∧ 𝑇 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑇 ∈ 𝐽 ) → 𝑇 ∈ ( 𝐽 ∩ ( Clsd ‘ 𝐽 ) ) ) |
| 10 | 2 | subg0cl | ⊢ ( 𝑇 ∈ ( SubGrp ‘ 𝐺 ) → 0 ∈ 𝑇 ) |
| 11 | 10 | 3ad2ant2 | ⊢ ( ( 𝐺 ∈ TopGrp ∧ 𝑇 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑇 ∈ 𝐽 ) → 0 ∈ 𝑇 ) |
| 12 | 4 | conncompclo | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑇 ∈ ( 𝐽 ∩ ( Clsd ‘ 𝐽 ) ) ∧ 0 ∈ 𝑇 ) → 𝑆 ⊆ 𝑇 ) |
| 13 | 6 9 11 12 | syl3anc | ⊢ ( ( 𝐺 ∈ TopGrp ∧ 𝑇 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑇 ∈ 𝐽 ) → 𝑆 ⊆ 𝑇 ) |