This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Inverses in a group are a symmetric notion. (Contributed by Stefan O'Rear, 26-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | oppgbas.1 | ⊢ 𝑂 = ( oppg ‘ 𝑅 ) | |
| oppginv.2 | ⊢ 𝐼 = ( invg ‘ 𝑅 ) | ||
| Assertion | oppginv | ⊢ ( 𝑅 ∈ Grp → 𝐼 = ( invg ‘ 𝑂 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oppgbas.1 | ⊢ 𝑂 = ( oppg ‘ 𝑅 ) | |
| 2 | oppginv.2 | ⊢ 𝐼 = ( invg ‘ 𝑅 ) | |
| 3 | eqid | ⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) | |
| 4 | 3 2 | grpinvf | ⊢ ( 𝑅 ∈ Grp → 𝐼 : ( Base ‘ 𝑅 ) ⟶ ( Base ‘ 𝑅 ) ) |
| 5 | eqid | ⊢ ( +g ‘ 𝑅 ) = ( +g ‘ 𝑅 ) | |
| 6 | eqid | ⊢ ( +g ‘ 𝑂 ) = ( +g ‘ 𝑂 ) | |
| 7 | 5 1 6 | oppgplus | ⊢ ( ( 𝐼 ‘ 𝑥 ) ( +g ‘ 𝑂 ) 𝑥 ) = ( 𝑥 ( +g ‘ 𝑅 ) ( 𝐼 ‘ 𝑥 ) ) |
| 8 | eqid | ⊢ ( 0g ‘ 𝑅 ) = ( 0g ‘ 𝑅 ) | |
| 9 | 3 5 8 2 | grprinv | ⊢ ( ( 𝑅 ∈ Grp ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) → ( 𝑥 ( +g ‘ 𝑅 ) ( 𝐼 ‘ 𝑥 ) ) = ( 0g ‘ 𝑅 ) ) |
| 10 | 7 9 | eqtrid | ⊢ ( ( 𝑅 ∈ Grp ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) → ( ( 𝐼 ‘ 𝑥 ) ( +g ‘ 𝑂 ) 𝑥 ) = ( 0g ‘ 𝑅 ) ) |
| 11 | 10 | ralrimiva | ⊢ ( 𝑅 ∈ Grp → ∀ 𝑥 ∈ ( Base ‘ 𝑅 ) ( ( 𝐼 ‘ 𝑥 ) ( +g ‘ 𝑂 ) 𝑥 ) = ( 0g ‘ 𝑅 ) ) |
| 12 | 1 | oppggrp | ⊢ ( 𝑅 ∈ Grp → 𝑂 ∈ Grp ) |
| 13 | 1 3 | oppgbas | ⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑂 ) |
| 14 | 1 8 | oppgid | ⊢ ( 0g ‘ 𝑅 ) = ( 0g ‘ 𝑂 ) |
| 15 | eqid | ⊢ ( invg ‘ 𝑂 ) = ( invg ‘ 𝑂 ) | |
| 16 | 13 6 14 15 | isgrpinv | ⊢ ( 𝑂 ∈ Grp → ( ( 𝐼 : ( Base ‘ 𝑅 ) ⟶ ( Base ‘ 𝑅 ) ∧ ∀ 𝑥 ∈ ( Base ‘ 𝑅 ) ( ( 𝐼 ‘ 𝑥 ) ( +g ‘ 𝑂 ) 𝑥 ) = ( 0g ‘ 𝑅 ) ) ↔ ( invg ‘ 𝑂 ) = 𝐼 ) ) |
| 17 | 12 16 | syl | ⊢ ( 𝑅 ∈ Grp → ( ( 𝐼 : ( Base ‘ 𝑅 ) ⟶ ( Base ‘ 𝑅 ) ∧ ∀ 𝑥 ∈ ( Base ‘ 𝑅 ) ( ( 𝐼 ‘ 𝑥 ) ( +g ‘ 𝑂 ) 𝑥 ) = ( 0g ‘ 𝑅 ) ) ↔ ( invg ‘ 𝑂 ) = 𝐼 ) ) |
| 18 | 4 11 17 | mpbi2and | ⊢ ( 𝑅 ∈ Grp → ( invg ‘ 𝑂 ) = 𝐼 ) |
| 19 | 18 | eqcomd | ⊢ ( 𝑅 ∈ Grp → 𝐼 = ( invg ‘ 𝑂 ) ) |