This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Weaken the condition of isnsg to only one side of the implication. (Contributed by Mario Carneiro, 18-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | isnsg.1 | ⊢ 𝑋 = ( Base ‘ 𝐺 ) | |
| isnsg.2 | ⊢ + = ( +g ‘ 𝐺 ) | ||
| Assertion | isnsg2 | ⊢ ( 𝑆 ∈ ( NrmSGrp ‘ 𝐺 ) ↔ ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( ( 𝑥 + 𝑦 ) ∈ 𝑆 → ( 𝑦 + 𝑥 ) ∈ 𝑆 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isnsg.1 | ⊢ 𝑋 = ( Base ‘ 𝐺 ) | |
| 2 | isnsg.2 | ⊢ + = ( +g ‘ 𝐺 ) | |
| 3 | 1 2 | isnsg | ⊢ ( 𝑆 ∈ ( NrmSGrp ‘ 𝐺 ) ↔ ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ ∀ 𝑥 ∈ 𝑋 ∀ 𝑧 ∈ 𝑋 ( ( 𝑥 + 𝑧 ) ∈ 𝑆 ↔ ( 𝑧 + 𝑥 ) ∈ 𝑆 ) ) ) |
| 4 | dfbi2 | ⊢ ( ( ( 𝑥 + 𝑧 ) ∈ 𝑆 ↔ ( 𝑧 + 𝑥 ) ∈ 𝑆 ) ↔ ( ( ( 𝑥 + 𝑧 ) ∈ 𝑆 → ( 𝑧 + 𝑥 ) ∈ 𝑆 ) ∧ ( ( 𝑧 + 𝑥 ) ∈ 𝑆 → ( 𝑥 + 𝑧 ) ∈ 𝑆 ) ) ) | |
| 5 | 4 | ralbii | ⊢ ( ∀ 𝑧 ∈ 𝑋 ( ( 𝑥 + 𝑧 ) ∈ 𝑆 ↔ ( 𝑧 + 𝑥 ) ∈ 𝑆 ) ↔ ∀ 𝑧 ∈ 𝑋 ( ( ( 𝑥 + 𝑧 ) ∈ 𝑆 → ( 𝑧 + 𝑥 ) ∈ 𝑆 ) ∧ ( ( 𝑧 + 𝑥 ) ∈ 𝑆 → ( 𝑥 + 𝑧 ) ∈ 𝑆 ) ) ) |
| 6 | 5 | ralbii | ⊢ ( ∀ 𝑥 ∈ 𝑋 ∀ 𝑧 ∈ 𝑋 ( ( 𝑥 + 𝑧 ) ∈ 𝑆 ↔ ( 𝑧 + 𝑥 ) ∈ 𝑆 ) ↔ ∀ 𝑥 ∈ 𝑋 ∀ 𝑧 ∈ 𝑋 ( ( ( 𝑥 + 𝑧 ) ∈ 𝑆 → ( 𝑧 + 𝑥 ) ∈ 𝑆 ) ∧ ( ( 𝑧 + 𝑥 ) ∈ 𝑆 → ( 𝑥 + 𝑧 ) ∈ 𝑆 ) ) ) |
| 7 | r19.26-2 | ⊢ ( ∀ 𝑥 ∈ 𝑋 ∀ 𝑧 ∈ 𝑋 ( ( ( 𝑥 + 𝑧 ) ∈ 𝑆 → ( 𝑧 + 𝑥 ) ∈ 𝑆 ) ∧ ( ( 𝑧 + 𝑥 ) ∈ 𝑆 → ( 𝑥 + 𝑧 ) ∈ 𝑆 ) ) ↔ ( ∀ 𝑥 ∈ 𝑋 ∀ 𝑧 ∈ 𝑋 ( ( 𝑥 + 𝑧 ) ∈ 𝑆 → ( 𝑧 + 𝑥 ) ∈ 𝑆 ) ∧ ∀ 𝑥 ∈ 𝑋 ∀ 𝑧 ∈ 𝑋 ( ( 𝑧 + 𝑥 ) ∈ 𝑆 → ( 𝑥 + 𝑧 ) ∈ 𝑆 ) ) ) | |
| 8 | 6 7 | bitri | ⊢ ( ∀ 𝑥 ∈ 𝑋 ∀ 𝑧 ∈ 𝑋 ( ( 𝑥 + 𝑧 ) ∈ 𝑆 ↔ ( 𝑧 + 𝑥 ) ∈ 𝑆 ) ↔ ( ∀ 𝑥 ∈ 𝑋 ∀ 𝑧 ∈ 𝑋 ( ( 𝑥 + 𝑧 ) ∈ 𝑆 → ( 𝑧 + 𝑥 ) ∈ 𝑆 ) ∧ ∀ 𝑥 ∈ 𝑋 ∀ 𝑧 ∈ 𝑋 ( ( 𝑧 + 𝑥 ) ∈ 𝑆 → ( 𝑥 + 𝑧 ) ∈ 𝑆 ) ) ) |
| 9 | oveq2 | ⊢ ( 𝑧 = 𝑦 → ( 𝑥 + 𝑧 ) = ( 𝑥 + 𝑦 ) ) | |
| 10 | 9 | eleq1d | ⊢ ( 𝑧 = 𝑦 → ( ( 𝑥 + 𝑧 ) ∈ 𝑆 ↔ ( 𝑥 + 𝑦 ) ∈ 𝑆 ) ) |
| 11 | oveq1 | ⊢ ( 𝑧 = 𝑦 → ( 𝑧 + 𝑥 ) = ( 𝑦 + 𝑥 ) ) | |
| 12 | 11 | eleq1d | ⊢ ( 𝑧 = 𝑦 → ( ( 𝑧 + 𝑥 ) ∈ 𝑆 ↔ ( 𝑦 + 𝑥 ) ∈ 𝑆 ) ) |
| 13 | 10 12 | imbi12d | ⊢ ( 𝑧 = 𝑦 → ( ( ( 𝑥 + 𝑧 ) ∈ 𝑆 → ( 𝑧 + 𝑥 ) ∈ 𝑆 ) ↔ ( ( 𝑥 + 𝑦 ) ∈ 𝑆 → ( 𝑦 + 𝑥 ) ∈ 𝑆 ) ) ) |
| 14 | 13 | cbvralvw | ⊢ ( ∀ 𝑧 ∈ 𝑋 ( ( 𝑥 + 𝑧 ) ∈ 𝑆 → ( 𝑧 + 𝑥 ) ∈ 𝑆 ) ↔ ∀ 𝑦 ∈ 𝑋 ( ( 𝑥 + 𝑦 ) ∈ 𝑆 → ( 𝑦 + 𝑥 ) ∈ 𝑆 ) ) |
| 15 | 14 | ralbii | ⊢ ( ∀ 𝑥 ∈ 𝑋 ∀ 𝑧 ∈ 𝑋 ( ( 𝑥 + 𝑧 ) ∈ 𝑆 → ( 𝑧 + 𝑥 ) ∈ 𝑆 ) ↔ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( ( 𝑥 + 𝑦 ) ∈ 𝑆 → ( 𝑦 + 𝑥 ) ∈ 𝑆 ) ) |
| 16 | ralcom | ⊢ ( ∀ 𝑥 ∈ 𝑋 ∀ 𝑧 ∈ 𝑋 ( ( 𝑧 + 𝑥 ) ∈ 𝑆 → ( 𝑥 + 𝑧 ) ∈ 𝑆 ) ↔ ∀ 𝑧 ∈ 𝑋 ∀ 𝑥 ∈ 𝑋 ( ( 𝑧 + 𝑥 ) ∈ 𝑆 → ( 𝑥 + 𝑧 ) ∈ 𝑆 ) ) | |
| 17 | oveq2 | ⊢ ( 𝑥 = 𝑦 → ( 𝑧 + 𝑥 ) = ( 𝑧 + 𝑦 ) ) | |
| 18 | 17 | eleq1d | ⊢ ( 𝑥 = 𝑦 → ( ( 𝑧 + 𝑥 ) ∈ 𝑆 ↔ ( 𝑧 + 𝑦 ) ∈ 𝑆 ) ) |
| 19 | oveq1 | ⊢ ( 𝑥 = 𝑦 → ( 𝑥 + 𝑧 ) = ( 𝑦 + 𝑧 ) ) | |
| 20 | 19 | eleq1d | ⊢ ( 𝑥 = 𝑦 → ( ( 𝑥 + 𝑧 ) ∈ 𝑆 ↔ ( 𝑦 + 𝑧 ) ∈ 𝑆 ) ) |
| 21 | 18 20 | imbi12d | ⊢ ( 𝑥 = 𝑦 → ( ( ( 𝑧 + 𝑥 ) ∈ 𝑆 → ( 𝑥 + 𝑧 ) ∈ 𝑆 ) ↔ ( ( 𝑧 + 𝑦 ) ∈ 𝑆 → ( 𝑦 + 𝑧 ) ∈ 𝑆 ) ) ) |
| 22 | 21 | cbvralvw | ⊢ ( ∀ 𝑥 ∈ 𝑋 ( ( 𝑧 + 𝑥 ) ∈ 𝑆 → ( 𝑥 + 𝑧 ) ∈ 𝑆 ) ↔ ∀ 𝑦 ∈ 𝑋 ( ( 𝑧 + 𝑦 ) ∈ 𝑆 → ( 𝑦 + 𝑧 ) ∈ 𝑆 ) ) |
| 23 | 22 | ralbii | ⊢ ( ∀ 𝑧 ∈ 𝑋 ∀ 𝑥 ∈ 𝑋 ( ( 𝑧 + 𝑥 ) ∈ 𝑆 → ( 𝑥 + 𝑧 ) ∈ 𝑆 ) ↔ ∀ 𝑧 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( ( 𝑧 + 𝑦 ) ∈ 𝑆 → ( 𝑦 + 𝑧 ) ∈ 𝑆 ) ) |
| 24 | oveq1 | ⊢ ( 𝑧 = 𝑥 → ( 𝑧 + 𝑦 ) = ( 𝑥 + 𝑦 ) ) | |
| 25 | 24 | eleq1d | ⊢ ( 𝑧 = 𝑥 → ( ( 𝑧 + 𝑦 ) ∈ 𝑆 ↔ ( 𝑥 + 𝑦 ) ∈ 𝑆 ) ) |
| 26 | oveq2 | ⊢ ( 𝑧 = 𝑥 → ( 𝑦 + 𝑧 ) = ( 𝑦 + 𝑥 ) ) | |
| 27 | 26 | eleq1d | ⊢ ( 𝑧 = 𝑥 → ( ( 𝑦 + 𝑧 ) ∈ 𝑆 ↔ ( 𝑦 + 𝑥 ) ∈ 𝑆 ) ) |
| 28 | 25 27 | imbi12d | ⊢ ( 𝑧 = 𝑥 → ( ( ( 𝑧 + 𝑦 ) ∈ 𝑆 → ( 𝑦 + 𝑧 ) ∈ 𝑆 ) ↔ ( ( 𝑥 + 𝑦 ) ∈ 𝑆 → ( 𝑦 + 𝑥 ) ∈ 𝑆 ) ) ) |
| 29 | 28 | ralbidv | ⊢ ( 𝑧 = 𝑥 → ( ∀ 𝑦 ∈ 𝑋 ( ( 𝑧 + 𝑦 ) ∈ 𝑆 → ( 𝑦 + 𝑧 ) ∈ 𝑆 ) ↔ ∀ 𝑦 ∈ 𝑋 ( ( 𝑥 + 𝑦 ) ∈ 𝑆 → ( 𝑦 + 𝑥 ) ∈ 𝑆 ) ) ) |
| 30 | 29 | cbvralvw | ⊢ ( ∀ 𝑧 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( ( 𝑧 + 𝑦 ) ∈ 𝑆 → ( 𝑦 + 𝑧 ) ∈ 𝑆 ) ↔ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( ( 𝑥 + 𝑦 ) ∈ 𝑆 → ( 𝑦 + 𝑥 ) ∈ 𝑆 ) ) |
| 31 | 16 23 30 | 3bitri | ⊢ ( ∀ 𝑥 ∈ 𝑋 ∀ 𝑧 ∈ 𝑋 ( ( 𝑧 + 𝑥 ) ∈ 𝑆 → ( 𝑥 + 𝑧 ) ∈ 𝑆 ) ↔ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( ( 𝑥 + 𝑦 ) ∈ 𝑆 → ( 𝑦 + 𝑥 ) ∈ 𝑆 ) ) |
| 32 | 15 31 | anbi12i | ⊢ ( ( ∀ 𝑥 ∈ 𝑋 ∀ 𝑧 ∈ 𝑋 ( ( 𝑥 + 𝑧 ) ∈ 𝑆 → ( 𝑧 + 𝑥 ) ∈ 𝑆 ) ∧ ∀ 𝑥 ∈ 𝑋 ∀ 𝑧 ∈ 𝑋 ( ( 𝑧 + 𝑥 ) ∈ 𝑆 → ( 𝑥 + 𝑧 ) ∈ 𝑆 ) ) ↔ ( ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( ( 𝑥 + 𝑦 ) ∈ 𝑆 → ( 𝑦 + 𝑥 ) ∈ 𝑆 ) ∧ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( ( 𝑥 + 𝑦 ) ∈ 𝑆 → ( 𝑦 + 𝑥 ) ∈ 𝑆 ) ) ) |
| 33 | anidm | ⊢ ( ( ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( ( 𝑥 + 𝑦 ) ∈ 𝑆 → ( 𝑦 + 𝑥 ) ∈ 𝑆 ) ∧ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( ( 𝑥 + 𝑦 ) ∈ 𝑆 → ( 𝑦 + 𝑥 ) ∈ 𝑆 ) ) ↔ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( ( 𝑥 + 𝑦 ) ∈ 𝑆 → ( 𝑦 + 𝑥 ) ∈ 𝑆 ) ) | |
| 34 | 8 32 33 | 3bitri | ⊢ ( ∀ 𝑥 ∈ 𝑋 ∀ 𝑧 ∈ 𝑋 ( ( 𝑥 + 𝑧 ) ∈ 𝑆 ↔ ( 𝑧 + 𝑥 ) ∈ 𝑆 ) ↔ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( ( 𝑥 + 𝑦 ) ∈ 𝑆 → ( 𝑦 + 𝑥 ) ∈ 𝑆 ) ) |
| 35 | 34 | anbi2i | ⊢ ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ ∀ 𝑥 ∈ 𝑋 ∀ 𝑧 ∈ 𝑋 ( ( 𝑥 + 𝑧 ) ∈ 𝑆 ↔ ( 𝑧 + 𝑥 ) ∈ 𝑆 ) ) ↔ ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( ( 𝑥 + 𝑦 ) ∈ 𝑆 → ( 𝑦 + 𝑥 ) ∈ 𝑆 ) ) ) |
| 36 | 3 35 | bitri | ⊢ ( 𝑆 ∈ ( NrmSGrp ‘ 𝐺 ) ↔ ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( ( 𝑥 + 𝑦 ) ∈ 𝑆 → ( 𝑦 + 𝑥 ) ∈ 𝑆 ) ) ) |