This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The uniform structure generated by the restriction of a metric is its trace. (Contributed by Thierry Arnoux, 18-Dec-2017)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | restmetu | ⊢ ( ( 𝐴 ≠ ∅ ∧ 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝐴 ⊆ 𝑋 ) → ( ( metUnif ‘ 𝐷 ) ↾t ( 𝐴 × 𝐴 ) ) = ( metUnif ‘ ( 𝐷 ↾ ( 𝐴 × 𝐴 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp1 | ⊢ ( ( 𝐴 ≠ ∅ ∧ 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝐴 ⊆ 𝑋 ) → 𝐴 ≠ ∅ ) | |
| 2 | psmetres2 | ⊢ ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝐴 ⊆ 𝑋 ) → ( 𝐷 ↾ ( 𝐴 × 𝐴 ) ) ∈ ( PsMet ‘ 𝐴 ) ) | |
| 3 | 2 | 3adant1 | ⊢ ( ( 𝐴 ≠ ∅ ∧ 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝐴 ⊆ 𝑋 ) → ( 𝐷 ↾ ( 𝐴 × 𝐴 ) ) ∈ ( PsMet ‘ 𝐴 ) ) |
| 4 | oveq2 | ⊢ ( 𝑎 = 𝑏 → ( 0 [,) 𝑎 ) = ( 0 [,) 𝑏 ) ) | |
| 5 | 4 | imaeq2d | ⊢ ( 𝑎 = 𝑏 → ( ◡ ( 𝐷 ↾ ( 𝐴 × 𝐴 ) ) “ ( 0 [,) 𝑎 ) ) = ( ◡ ( 𝐷 ↾ ( 𝐴 × 𝐴 ) ) “ ( 0 [,) 𝑏 ) ) ) |
| 6 | 5 | cbvmptv | ⊢ ( 𝑎 ∈ ℝ+ ↦ ( ◡ ( 𝐷 ↾ ( 𝐴 × 𝐴 ) ) “ ( 0 [,) 𝑎 ) ) ) = ( 𝑏 ∈ ℝ+ ↦ ( ◡ ( 𝐷 ↾ ( 𝐴 × 𝐴 ) ) “ ( 0 [,) 𝑏 ) ) ) |
| 7 | 6 | rneqi | ⊢ ran ( 𝑎 ∈ ℝ+ ↦ ( ◡ ( 𝐷 ↾ ( 𝐴 × 𝐴 ) ) “ ( 0 [,) 𝑎 ) ) ) = ran ( 𝑏 ∈ ℝ+ ↦ ( ◡ ( 𝐷 ↾ ( 𝐴 × 𝐴 ) ) “ ( 0 [,) 𝑏 ) ) ) |
| 8 | 7 | metustfbas | ⊢ ( ( 𝐴 ≠ ∅ ∧ ( 𝐷 ↾ ( 𝐴 × 𝐴 ) ) ∈ ( PsMet ‘ 𝐴 ) ) → ran ( 𝑎 ∈ ℝ+ ↦ ( ◡ ( 𝐷 ↾ ( 𝐴 × 𝐴 ) ) “ ( 0 [,) 𝑎 ) ) ) ∈ ( fBas ‘ ( 𝐴 × 𝐴 ) ) ) |
| 9 | 1 3 8 | syl2anc | ⊢ ( ( 𝐴 ≠ ∅ ∧ 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝐴 ⊆ 𝑋 ) → ran ( 𝑎 ∈ ℝ+ ↦ ( ◡ ( 𝐷 ↾ ( 𝐴 × 𝐴 ) ) “ ( 0 [,) 𝑎 ) ) ) ∈ ( fBas ‘ ( 𝐴 × 𝐴 ) ) ) |
| 10 | fgval | ⊢ ( ran ( 𝑎 ∈ ℝ+ ↦ ( ◡ ( 𝐷 ↾ ( 𝐴 × 𝐴 ) ) “ ( 0 [,) 𝑎 ) ) ) ∈ ( fBas ‘ ( 𝐴 × 𝐴 ) ) → ( ( 𝐴 × 𝐴 ) filGen ran ( 𝑎 ∈ ℝ+ ↦ ( ◡ ( 𝐷 ↾ ( 𝐴 × 𝐴 ) ) “ ( 0 [,) 𝑎 ) ) ) ) = { 𝑣 ∈ 𝒫 ( 𝐴 × 𝐴 ) ∣ ( ran ( 𝑎 ∈ ℝ+ ↦ ( ◡ ( 𝐷 ↾ ( 𝐴 × 𝐴 ) ) “ ( 0 [,) 𝑎 ) ) ) ∩ 𝒫 𝑣 ) ≠ ∅ } ) | |
| 11 | 9 10 | syl | ⊢ ( ( 𝐴 ≠ ∅ ∧ 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝐴 ⊆ 𝑋 ) → ( ( 𝐴 × 𝐴 ) filGen ran ( 𝑎 ∈ ℝ+ ↦ ( ◡ ( 𝐷 ↾ ( 𝐴 × 𝐴 ) ) “ ( 0 [,) 𝑎 ) ) ) ) = { 𝑣 ∈ 𝒫 ( 𝐴 × 𝐴 ) ∣ ( ran ( 𝑎 ∈ ℝ+ ↦ ( ◡ ( 𝐷 ↾ ( 𝐴 × 𝐴 ) ) “ ( 0 [,) 𝑎 ) ) ) ∩ 𝒫 𝑣 ) ≠ ∅ } ) |
| 12 | metuval | ⊢ ( ( 𝐷 ↾ ( 𝐴 × 𝐴 ) ) ∈ ( PsMet ‘ 𝐴 ) → ( metUnif ‘ ( 𝐷 ↾ ( 𝐴 × 𝐴 ) ) ) = ( ( 𝐴 × 𝐴 ) filGen ran ( 𝑎 ∈ ℝ+ ↦ ( ◡ ( 𝐷 ↾ ( 𝐴 × 𝐴 ) ) “ ( 0 [,) 𝑎 ) ) ) ) ) | |
| 13 | 3 12 | syl | ⊢ ( ( 𝐴 ≠ ∅ ∧ 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝐴 ⊆ 𝑋 ) → ( metUnif ‘ ( 𝐷 ↾ ( 𝐴 × 𝐴 ) ) ) = ( ( 𝐴 × 𝐴 ) filGen ran ( 𝑎 ∈ ℝ+ ↦ ( ◡ ( 𝐷 ↾ ( 𝐴 × 𝐴 ) ) “ ( 0 [,) 𝑎 ) ) ) ) ) |
| 14 | fvex | ⊢ ( metUnif ‘ 𝐷 ) ∈ V | |
| 15 | 3 | elfvexd | ⊢ ( ( 𝐴 ≠ ∅ ∧ 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝐴 ⊆ 𝑋 ) → 𝐴 ∈ V ) |
| 16 | 15 15 | xpexd | ⊢ ( ( 𝐴 ≠ ∅ ∧ 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝐴 ⊆ 𝑋 ) → ( 𝐴 × 𝐴 ) ∈ V ) |
| 17 | restval | ⊢ ( ( ( metUnif ‘ 𝐷 ) ∈ V ∧ ( 𝐴 × 𝐴 ) ∈ V ) → ( ( metUnif ‘ 𝐷 ) ↾t ( 𝐴 × 𝐴 ) ) = ran ( 𝑣 ∈ ( metUnif ‘ 𝐷 ) ↦ ( 𝑣 ∩ ( 𝐴 × 𝐴 ) ) ) ) | |
| 18 | 14 16 17 | sylancr | ⊢ ( ( 𝐴 ≠ ∅ ∧ 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝐴 ⊆ 𝑋 ) → ( ( metUnif ‘ 𝐷 ) ↾t ( 𝐴 × 𝐴 ) ) = ran ( 𝑣 ∈ ( metUnif ‘ 𝐷 ) ↦ ( 𝑣 ∩ ( 𝐴 × 𝐴 ) ) ) ) |
| 19 | inss2 | ⊢ ( 𝑣 ∩ ( 𝐴 × 𝐴 ) ) ⊆ ( 𝐴 × 𝐴 ) | |
| 20 | sseq1 | ⊢ ( 𝑢 = ( 𝑣 ∩ ( 𝐴 × 𝐴 ) ) → ( 𝑢 ⊆ ( 𝐴 × 𝐴 ) ↔ ( 𝑣 ∩ ( 𝐴 × 𝐴 ) ) ⊆ ( 𝐴 × 𝐴 ) ) ) | |
| 21 | 19 20 | mpbiri | ⊢ ( 𝑢 = ( 𝑣 ∩ ( 𝐴 × 𝐴 ) ) → 𝑢 ⊆ ( 𝐴 × 𝐴 ) ) |
| 22 | vex | ⊢ 𝑢 ∈ V | |
| 23 | 22 | elpw | ⊢ ( 𝑢 ∈ 𝒫 ( 𝐴 × 𝐴 ) ↔ 𝑢 ⊆ ( 𝐴 × 𝐴 ) ) |
| 24 | 21 23 | sylibr | ⊢ ( 𝑢 = ( 𝑣 ∩ ( 𝐴 × 𝐴 ) ) → 𝑢 ∈ 𝒫 ( 𝐴 × 𝐴 ) ) |
| 25 | 24 | rexlimivw | ⊢ ( ∃ 𝑣 ∈ ( metUnif ‘ 𝐷 ) 𝑢 = ( 𝑣 ∩ ( 𝐴 × 𝐴 ) ) → 𝑢 ∈ 𝒫 ( 𝐴 × 𝐴 ) ) |
| 26 | 25 | adantl | ⊢ ( ( ( 𝐴 ≠ ∅ ∧ 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝐴 ⊆ 𝑋 ) ∧ ∃ 𝑣 ∈ ( metUnif ‘ 𝐷 ) 𝑢 = ( 𝑣 ∩ ( 𝐴 × 𝐴 ) ) ) → 𝑢 ∈ 𝒫 ( 𝐴 × 𝐴 ) ) |
| 27 | nfv | ⊢ Ⅎ 𝑎 ( ( ( 𝐴 ≠ ∅ ∧ 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝐴 ⊆ 𝑋 ) ∧ 𝑣 ∈ ( metUnif ‘ 𝐷 ) ) ∧ 𝑢 = ( 𝑣 ∩ ( 𝐴 × 𝐴 ) ) ) | |
| 28 | nfmpt1 | ⊢ Ⅎ 𝑎 ( 𝑎 ∈ ℝ+ ↦ ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) ) | |
| 29 | 28 | nfrn | ⊢ Ⅎ 𝑎 ran ( 𝑎 ∈ ℝ+ ↦ ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) ) |
| 30 | 29 | nfcri | ⊢ Ⅎ 𝑎 𝑤 ∈ ran ( 𝑎 ∈ ℝ+ ↦ ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) ) |
| 31 | 27 30 | nfan | ⊢ Ⅎ 𝑎 ( ( ( ( 𝐴 ≠ ∅ ∧ 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝐴 ⊆ 𝑋 ) ∧ 𝑣 ∈ ( metUnif ‘ 𝐷 ) ) ∧ 𝑢 = ( 𝑣 ∩ ( 𝐴 × 𝐴 ) ) ) ∧ 𝑤 ∈ ran ( 𝑎 ∈ ℝ+ ↦ ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) ) ) |
| 32 | nfv | ⊢ Ⅎ 𝑎 𝑤 ⊆ 𝑣 | |
| 33 | 31 32 | nfan | ⊢ Ⅎ 𝑎 ( ( ( ( ( 𝐴 ≠ ∅ ∧ 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝐴 ⊆ 𝑋 ) ∧ 𝑣 ∈ ( metUnif ‘ 𝐷 ) ) ∧ 𝑢 = ( 𝑣 ∩ ( 𝐴 × 𝐴 ) ) ) ∧ 𝑤 ∈ ran ( 𝑎 ∈ ℝ+ ↦ ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) ) ) ∧ 𝑤 ⊆ 𝑣 ) |
| 34 | nfmpt1 | ⊢ Ⅎ 𝑎 ( 𝑎 ∈ ℝ+ ↦ ( ◡ ( 𝐷 ↾ ( 𝐴 × 𝐴 ) ) “ ( 0 [,) 𝑎 ) ) ) | |
| 35 | 34 | nfrn | ⊢ Ⅎ 𝑎 ran ( 𝑎 ∈ ℝ+ ↦ ( ◡ ( 𝐷 ↾ ( 𝐴 × 𝐴 ) ) “ ( 0 [,) 𝑎 ) ) ) |
| 36 | nfcv | ⊢ Ⅎ 𝑎 𝒫 𝑢 | |
| 37 | 35 36 | nfin | ⊢ Ⅎ 𝑎 ( ran ( 𝑎 ∈ ℝ+ ↦ ( ◡ ( 𝐷 ↾ ( 𝐴 × 𝐴 ) ) “ ( 0 [,) 𝑎 ) ) ) ∩ 𝒫 𝑢 ) |
| 38 | nfcv | ⊢ Ⅎ 𝑎 ∅ | |
| 39 | 37 38 | nfne | ⊢ Ⅎ 𝑎 ( ran ( 𝑎 ∈ ℝ+ ↦ ( ◡ ( 𝐷 ↾ ( 𝐴 × 𝐴 ) ) “ ( 0 [,) 𝑎 ) ) ) ∩ 𝒫 𝑢 ) ≠ ∅ |
| 40 | simplr | ⊢ ( ( ( ( ( ( ( ( 𝐴 ≠ ∅ ∧ 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝐴 ⊆ 𝑋 ) ∧ 𝑣 ∈ ( metUnif ‘ 𝐷 ) ) ∧ 𝑢 = ( 𝑣 ∩ ( 𝐴 × 𝐴 ) ) ) ∧ 𝑤 ∈ ran ( 𝑎 ∈ ℝ+ ↦ ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) ) ) ∧ 𝑤 ⊆ 𝑣 ) ∧ 𝑎 ∈ ℝ+ ) ∧ 𝑤 = ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) ) → 𝑎 ∈ ℝ+ ) | |
| 41 | ineq1 | ⊢ ( 𝑤 = ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) → ( 𝑤 ∩ ( 𝐴 × 𝐴 ) ) = ( ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) ∩ ( 𝐴 × 𝐴 ) ) ) | |
| 42 | 41 | adantl | ⊢ ( ( ( ( ( ( ( ( 𝐴 ≠ ∅ ∧ 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝐴 ⊆ 𝑋 ) ∧ 𝑣 ∈ ( metUnif ‘ 𝐷 ) ) ∧ 𝑢 = ( 𝑣 ∩ ( 𝐴 × 𝐴 ) ) ) ∧ 𝑤 ∈ ran ( 𝑎 ∈ ℝ+ ↦ ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) ) ) ∧ 𝑤 ⊆ 𝑣 ) ∧ 𝑎 ∈ ℝ+ ) ∧ 𝑤 = ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) ) → ( 𝑤 ∩ ( 𝐴 × 𝐴 ) ) = ( ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) ∩ ( 𝐴 × 𝐴 ) ) ) |
| 43 | simp2 | ⊢ ( ( 𝐴 ≠ ∅ ∧ 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝐴 ⊆ 𝑋 ) → 𝐷 ∈ ( PsMet ‘ 𝑋 ) ) | |
| 44 | psmetf | ⊢ ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) → 𝐷 : ( 𝑋 × 𝑋 ) ⟶ ℝ* ) | |
| 45 | ffun | ⊢ ( 𝐷 : ( 𝑋 × 𝑋 ) ⟶ ℝ* → Fun 𝐷 ) | |
| 46 | respreima | ⊢ ( Fun 𝐷 → ( ◡ ( 𝐷 ↾ ( 𝐴 × 𝐴 ) ) “ ( 0 [,) 𝑎 ) ) = ( ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) ∩ ( 𝐴 × 𝐴 ) ) ) | |
| 47 | 43 44 45 46 | 4syl | ⊢ ( ( 𝐴 ≠ ∅ ∧ 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝐴 ⊆ 𝑋 ) → ( ◡ ( 𝐷 ↾ ( 𝐴 × 𝐴 ) ) “ ( 0 [,) 𝑎 ) ) = ( ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) ∩ ( 𝐴 × 𝐴 ) ) ) |
| 48 | 47 | ad6antr | ⊢ ( ( ( ( ( ( ( ( 𝐴 ≠ ∅ ∧ 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝐴 ⊆ 𝑋 ) ∧ 𝑣 ∈ ( metUnif ‘ 𝐷 ) ) ∧ 𝑢 = ( 𝑣 ∩ ( 𝐴 × 𝐴 ) ) ) ∧ 𝑤 ∈ ran ( 𝑎 ∈ ℝ+ ↦ ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) ) ) ∧ 𝑤 ⊆ 𝑣 ) ∧ 𝑎 ∈ ℝ+ ) ∧ 𝑤 = ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) ) → ( ◡ ( 𝐷 ↾ ( 𝐴 × 𝐴 ) ) “ ( 0 [,) 𝑎 ) ) = ( ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) ∩ ( 𝐴 × 𝐴 ) ) ) |
| 49 | 42 48 | eqtr4d | ⊢ ( ( ( ( ( ( ( ( 𝐴 ≠ ∅ ∧ 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝐴 ⊆ 𝑋 ) ∧ 𝑣 ∈ ( metUnif ‘ 𝐷 ) ) ∧ 𝑢 = ( 𝑣 ∩ ( 𝐴 × 𝐴 ) ) ) ∧ 𝑤 ∈ ran ( 𝑎 ∈ ℝ+ ↦ ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) ) ) ∧ 𝑤 ⊆ 𝑣 ) ∧ 𝑎 ∈ ℝ+ ) ∧ 𝑤 = ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) ) → ( 𝑤 ∩ ( 𝐴 × 𝐴 ) ) = ( ◡ ( 𝐷 ↾ ( 𝐴 × 𝐴 ) ) “ ( 0 [,) 𝑎 ) ) ) |
| 50 | rspe | ⊢ ( ( 𝑎 ∈ ℝ+ ∧ ( 𝑤 ∩ ( 𝐴 × 𝐴 ) ) = ( ◡ ( 𝐷 ↾ ( 𝐴 × 𝐴 ) ) “ ( 0 [,) 𝑎 ) ) ) → ∃ 𝑎 ∈ ℝ+ ( 𝑤 ∩ ( 𝐴 × 𝐴 ) ) = ( ◡ ( 𝐷 ↾ ( 𝐴 × 𝐴 ) ) “ ( 0 [,) 𝑎 ) ) ) | |
| 51 | 40 49 50 | syl2anc | ⊢ ( ( ( ( ( ( ( ( 𝐴 ≠ ∅ ∧ 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝐴 ⊆ 𝑋 ) ∧ 𝑣 ∈ ( metUnif ‘ 𝐷 ) ) ∧ 𝑢 = ( 𝑣 ∩ ( 𝐴 × 𝐴 ) ) ) ∧ 𝑤 ∈ ran ( 𝑎 ∈ ℝ+ ↦ ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) ) ) ∧ 𝑤 ⊆ 𝑣 ) ∧ 𝑎 ∈ ℝ+ ) ∧ 𝑤 = ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) ) → ∃ 𝑎 ∈ ℝ+ ( 𝑤 ∩ ( 𝐴 × 𝐴 ) ) = ( ◡ ( 𝐷 ↾ ( 𝐴 × 𝐴 ) ) “ ( 0 [,) 𝑎 ) ) ) |
| 52 | vex | ⊢ 𝑤 ∈ V | |
| 53 | 52 | inex1 | ⊢ ( 𝑤 ∩ ( 𝐴 × 𝐴 ) ) ∈ V |
| 54 | eqid | ⊢ ( 𝑎 ∈ ℝ+ ↦ ( ◡ ( 𝐷 ↾ ( 𝐴 × 𝐴 ) ) “ ( 0 [,) 𝑎 ) ) ) = ( 𝑎 ∈ ℝ+ ↦ ( ◡ ( 𝐷 ↾ ( 𝐴 × 𝐴 ) ) “ ( 0 [,) 𝑎 ) ) ) | |
| 55 | 54 | elrnmpt | ⊢ ( ( 𝑤 ∩ ( 𝐴 × 𝐴 ) ) ∈ V → ( ( 𝑤 ∩ ( 𝐴 × 𝐴 ) ) ∈ ran ( 𝑎 ∈ ℝ+ ↦ ( ◡ ( 𝐷 ↾ ( 𝐴 × 𝐴 ) ) “ ( 0 [,) 𝑎 ) ) ) ↔ ∃ 𝑎 ∈ ℝ+ ( 𝑤 ∩ ( 𝐴 × 𝐴 ) ) = ( ◡ ( 𝐷 ↾ ( 𝐴 × 𝐴 ) ) “ ( 0 [,) 𝑎 ) ) ) ) |
| 56 | 53 55 | ax-mp | ⊢ ( ( 𝑤 ∩ ( 𝐴 × 𝐴 ) ) ∈ ran ( 𝑎 ∈ ℝ+ ↦ ( ◡ ( 𝐷 ↾ ( 𝐴 × 𝐴 ) ) “ ( 0 [,) 𝑎 ) ) ) ↔ ∃ 𝑎 ∈ ℝ+ ( 𝑤 ∩ ( 𝐴 × 𝐴 ) ) = ( ◡ ( 𝐷 ↾ ( 𝐴 × 𝐴 ) ) “ ( 0 [,) 𝑎 ) ) ) |
| 57 | 51 56 | sylibr | ⊢ ( ( ( ( ( ( ( ( 𝐴 ≠ ∅ ∧ 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝐴 ⊆ 𝑋 ) ∧ 𝑣 ∈ ( metUnif ‘ 𝐷 ) ) ∧ 𝑢 = ( 𝑣 ∩ ( 𝐴 × 𝐴 ) ) ) ∧ 𝑤 ∈ ran ( 𝑎 ∈ ℝ+ ↦ ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) ) ) ∧ 𝑤 ⊆ 𝑣 ) ∧ 𝑎 ∈ ℝ+ ) ∧ 𝑤 = ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) ) → ( 𝑤 ∩ ( 𝐴 × 𝐴 ) ) ∈ ran ( 𝑎 ∈ ℝ+ ↦ ( ◡ ( 𝐷 ↾ ( 𝐴 × 𝐴 ) ) “ ( 0 [,) 𝑎 ) ) ) ) |
| 58 | simpllr | ⊢ ( ( ( ( ( ( ( ( 𝐴 ≠ ∅ ∧ 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝐴 ⊆ 𝑋 ) ∧ 𝑣 ∈ ( metUnif ‘ 𝐷 ) ) ∧ 𝑢 = ( 𝑣 ∩ ( 𝐴 × 𝐴 ) ) ) ∧ 𝑤 ∈ ran ( 𝑎 ∈ ℝ+ ↦ ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) ) ) ∧ 𝑤 ⊆ 𝑣 ) ∧ 𝑎 ∈ ℝ+ ) ∧ 𝑤 = ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) ) → 𝑤 ⊆ 𝑣 ) | |
| 59 | ssinss1 | ⊢ ( 𝑤 ⊆ 𝑣 → ( 𝑤 ∩ ( 𝐴 × 𝐴 ) ) ⊆ 𝑣 ) | |
| 60 | 58 59 | syl | ⊢ ( ( ( ( ( ( ( ( 𝐴 ≠ ∅ ∧ 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝐴 ⊆ 𝑋 ) ∧ 𝑣 ∈ ( metUnif ‘ 𝐷 ) ) ∧ 𝑢 = ( 𝑣 ∩ ( 𝐴 × 𝐴 ) ) ) ∧ 𝑤 ∈ ran ( 𝑎 ∈ ℝ+ ↦ ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) ) ) ∧ 𝑤 ⊆ 𝑣 ) ∧ 𝑎 ∈ ℝ+ ) ∧ 𝑤 = ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) ) → ( 𝑤 ∩ ( 𝐴 × 𝐴 ) ) ⊆ 𝑣 ) |
| 61 | inss2 | ⊢ ( 𝑤 ∩ ( 𝐴 × 𝐴 ) ) ⊆ ( 𝐴 × 𝐴 ) | |
| 62 | 61 | a1i | ⊢ ( ( ( ( ( ( ( ( 𝐴 ≠ ∅ ∧ 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝐴 ⊆ 𝑋 ) ∧ 𝑣 ∈ ( metUnif ‘ 𝐷 ) ) ∧ 𝑢 = ( 𝑣 ∩ ( 𝐴 × 𝐴 ) ) ) ∧ 𝑤 ∈ ran ( 𝑎 ∈ ℝ+ ↦ ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) ) ) ∧ 𝑤 ⊆ 𝑣 ) ∧ 𝑎 ∈ ℝ+ ) ∧ 𝑤 = ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) ) → ( 𝑤 ∩ ( 𝐴 × 𝐴 ) ) ⊆ ( 𝐴 × 𝐴 ) ) |
| 63 | pweq | ⊢ ( 𝑢 = ( 𝑣 ∩ ( 𝐴 × 𝐴 ) ) → 𝒫 𝑢 = 𝒫 ( 𝑣 ∩ ( 𝐴 × 𝐴 ) ) ) | |
| 64 | 63 | eleq2d | ⊢ ( 𝑢 = ( 𝑣 ∩ ( 𝐴 × 𝐴 ) ) → ( ( 𝑤 ∩ ( 𝐴 × 𝐴 ) ) ∈ 𝒫 𝑢 ↔ ( 𝑤 ∩ ( 𝐴 × 𝐴 ) ) ∈ 𝒫 ( 𝑣 ∩ ( 𝐴 × 𝐴 ) ) ) ) |
| 65 | 53 | elpw | ⊢ ( ( 𝑤 ∩ ( 𝐴 × 𝐴 ) ) ∈ 𝒫 ( 𝑣 ∩ ( 𝐴 × 𝐴 ) ) ↔ ( 𝑤 ∩ ( 𝐴 × 𝐴 ) ) ⊆ ( 𝑣 ∩ ( 𝐴 × 𝐴 ) ) ) |
| 66 | 64 65 | bitrdi | ⊢ ( 𝑢 = ( 𝑣 ∩ ( 𝐴 × 𝐴 ) ) → ( ( 𝑤 ∩ ( 𝐴 × 𝐴 ) ) ∈ 𝒫 𝑢 ↔ ( 𝑤 ∩ ( 𝐴 × 𝐴 ) ) ⊆ ( 𝑣 ∩ ( 𝐴 × 𝐴 ) ) ) ) |
| 67 | ssin | ⊢ ( ( ( 𝑤 ∩ ( 𝐴 × 𝐴 ) ) ⊆ 𝑣 ∧ ( 𝑤 ∩ ( 𝐴 × 𝐴 ) ) ⊆ ( 𝐴 × 𝐴 ) ) ↔ ( 𝑤 ∩ ( 𝐴 × 𝐴 ) ) ⊆ ( 𝑣 ∩ ( 𝐴 × 𝐴 ) ) ) | |
| 68 | 66 67 | bitr4di | ⊢ ( 𝑢 = ( 𝑣 ∩ ( 𝐴 × 𝐴 ) ) → ( ( 𝑤 ∩ ( 𝐴 × 𝐴 ) ) ∈ 𝒫 𝑢 ↔ ( ( 𝑤 ∩ ( 𝐴 × 𝐴 ) ) ⊆ 𝑣 ∧ ( 𝑤 ∩ ( 𝐴 × 𝐴 ) ) ⊆ ( 𝐴 × 𝐴 ) ) ) ) |
| 69 | 68 | ad5antlr | ⊢ ( ( ( ( ( ( ( ( 𝐴 ≠ ∅ ∧ 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝐴 ⊆ 𝑋 ) ∧ 𝑣 ∈ ( metUnif ‘ 𝐷 ) ) ∧ 𝑢 = ( 𝑣 ∩ ( 𝐴 × 𝐴 ) ) ) ∧ 𝑤 ∈ ran ( 𝑎 ∈ ℝ+ ↦ ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) ) ) ∧ 𝑤 ⊆ 𝑣 ) ∧ 𝑎 ∈ ℝ+ ) ∧ 𝑤 = ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) ) → ( ( 𝑤 ∩ ( 𝐴 × 𝐴 ) ) ∈ 𝒫 𝑢 ↔ ( ( 𝑤 ∩ ( 𝐴 × 𝐴 ) ) ⊆ 𝑣 ∧ ( 𝑤 ∩ ( 𝐴 × 𝐴 ) ) ⊆ ( 𝐴 × 𝐴 ) ) ) ) |
| 70 | 60 62 69 | mpbir2and | ⊢ ( ( ( ( ( ( ( ( 𝐴 ≠ ∅ ∧ 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝐴 ⊆ 𝑋 ) ∧ 𝑣 ∈ ( metUnif ‘ 𝐷 ) ) ∧ 𝑢 = ( 𝑣 ∩ ( 𝐴 × 𝐴 ) ) ) ∧ 𝑤 ∈ ran ( 𝑎 ∈ ℝ+ ↦ ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) ) ) ∧ 𝑤 ⊆ 𝑣 ) ∧ 𝑎 ∈ ℝ+ ) ∧ 𝑤 = ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) ) → ( 𝑤 ∩ ( 𝐴 × 𝐴 ) ) ∈ 𝒫 𝑢 ) |
| 71 | inelcm | ⊢ ( ( ( 𝑤 ∩ ( 𝐴 × 𝐴 ) ) ∈ ran ( 𝑎 ∈ ℝ+ ↦ ( ◡ ( 𝐷 ↾ ( 𝐴 × 𝐴 ) ) “ ( 0 [,) 𝑎 ) ) ) ∧ ( 𝑤 ∩ ( 𝐴 × 𝐴 ) ) ∈ 𝒫 𝑢 ) → ( ran ( 𝑎 ∈ ℝ+ ↦ ( ◡ ( 𝐷 ↾ ( 𝐴 × 𝐴 ) ) “ ( 0 [,) 𝑎 ) ) ) ∩ 𝒫 𝑢 ) ≠ ∅ ) | |
| 72 | 57 70 71 | syl2anc | ⊢ ( ( ( ( ( ( ( ( 𝐴 ≠ ∅ ∧ 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝐴 ⊆ 𝑋 ) ∧ 𝑣 ∈ ( metUnif ‘ 𝐷 ) ) ∧ 𝑢 = ( 𝑣 ∩ ( 𝐴 × 𝐴 ) ) ) ∧ 𝑤 ∈ ran ( 𝑎 ∈ ℝ+ ↦ ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) ) ) ∧ 𝑤 ⊆ 𝑣 ) ∧ 𝑎 ∈ ℝ+ ) ∧ 𝑤 = ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) ) → ( ran ( 𝑎 ∈ ℝ+ ↦ ( ◡ ( 𝐷 ↾ ( 𝐴 × 𝐴 ) ) “ ( 0 [,) 𝑎 ) ) ) ∩ 𝒫 𝑢 ) ≠ ∅ ) |
| 73 | simplr | ⊢ ( ( ( ( ( ( 𝐴 ≠ ∅ ∧ 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝐴 ⊆ 𝑋 ) ∧ 𝑣 ∈ ( metUnif ‘ 𝐷 ) ) ∧ 𝑢 = ( 𝑣 ∩ ( 𝐴 × 𝐴 ) ) ) ∧ 𝑤 ∈ ran ( 𝑎 ∈ ℝ+ ↦ ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) ) ) ∧ 𝑤 ⊆ 𝑣 ) → 𝑤 ∈ ran ( 𝑎 ∈ ℝ+ ↦ ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) ) ) | |
| 74 | eqid | ⊢ ( 𝑎 ∈ ℝ+ ↦ ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) ) = ( 𝑎 ∈ ℝ+ ↦ ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) ) | |
| 75 | 74 | elrnmpt | ⊢ ( 𝑤 ∈ V → ( 𝑤 ∈ ran ( 𝑎 ∈ ℝ+ ↦ ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) ) ↔ ∃ 𝑎 ∈ ℝ+ 𝑤 = ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) ) ) |
| 76 | 75 | elv | ⊢ ( 𝑤 ∈ ran ( 𝑎 ∈ ℝ+ ↦ ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) ) ↔ ∃ 𝑎 ∈ ℝ+ 𝑤 = ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) ) |
| 77 | 73 76 | sylib | ⊢ ( ( ( ( ( ( 𝐴 ≠ ∅ ∧ 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝐴 ⊆ 𝑋 ) ∧ 𝑣 ∈ ( metUnif ‘ 𝐷 ) ) ∧ 𝑢 = ( 𝑣 ∩ ( 𝐴 × 𝐴 ) ) ) ∧ 𝑤 ∈ ran ( 𝑎 ∈ ℝ+ ↦ ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) ) ) ∧ 𝑤 ⊆ 𝑣 ) → ∃ 𝑎 ∈ ℝ+ 𝑤 = ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) ) |
| 78 | 33 39 72 77 | r19.29af2 | ⊢ ( ( ( ( ( ( 𝐴 ≠ ∅ ∧ 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝐴 ⊆ 𝑋 ) ∧ 𝑣 ∈ ( metUnif ‘ 𝐷 ) ) ∧ 𝑢 = ( 𝑣 ∩ ( 𝐴 × 𝐴 ) ) ) ∧ 𝑤 ∈ ran ( 𝑎 ∈ ℝ+ ↦ ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) ) ) ∧ 𝑤 ⊆ 𝑣 ) → ( ran ( 𝑎 ∈ ℝ+ ↦ ( ◡ ( 𝐷 ↾ ( 𝐴 × 𝐴 ) ) “ ( 0 [,) 𝑎 ) ) ) ∩ 𝒫 𝑢 ) ≠ ∅ ) |
| 79 | ssn0 | ⊢ ( ( 𝐴 ⊆ 𝑋 ∧ 𝐴 ≠ ∅ ) → 𝑋 ≠ ∅ ) | |
| 80 | 79 | ancoms | ⊢ ( ( 𝐴 ≠ ∅ ∧ 𝐴 ⊆ 𝑋 ) → 𝑋 ≠ ∅ ) |
| 81 | 80 | 3adant2 | ⊢ ( ( 𝐴 ≠ ∅ ∧ 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝐴 ⊆ 𝑋 ) → 𝑋 ≠ ∅ ) |
| 82 | metuel | ⊢ ( ( 𝑋 ≠ ∅ ∧ 𝐷 ∈ ( PsMet ‘ 𝑋 ) ) → ( 𝑣 ∈ ( metUnif ‘ 𝐷 ) ↔ ( 𝑣 ⊆ ( 𝑋 × 𝑋 ) ∧ ∃ 𝑤 ∈ ran ( 𝑎 ∈ ℝ+ ↦ ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) ) 𝑤 ⊆ 𝑣 ) ) ) | |
| 83 | 81 43 82 | syl2anc | ⊢ ( ( 𝐴 ≠ ∅ ∧ 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝐴 ⊆ 𝑋 ) → ( 𝑣 ∈ ( metUnif ‘ 𝐷 ) ↔ ( 𝑣 ⊆ ( 𝑋 × 𝑋 ) ∧ ∃ 𝑤 ∈ ran ( 𝑎 ∈ ℝ+ ↦ ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) ) 𝑤 ⊆ 𝑣 ) ) ) |
| 84 | 83 | simplbda | ⊢ ( ( ( 𝐴 ≠ ∅ ∧ 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝐴 ⊆ 𝑋 ) ∧ 𝑣 ∈ ( metUnif ‘ 𝐷 ) ) → ∃ 𝑤 ∈ ran ( 𝑎 ∈ ℝ+ ↦ ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) ) 𝑤 ⊆ 𝑣 ) |
| 85 | 84 | adantr | ⊢ ( ( ( ( 𝐴 ≠ ∅ ∧ 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝐴 ⊆ 𝑋 ) ∧ 𝑣 ∈ ( metUnif ‘ 𝐷 ) ) ∧ 𝑢 = ( 𝑣 ∩ ( 𝐴 × 𝐴 ) ) ) → ∃ 𝑤 ∈ ran ( 𝑎 ∈ ℝ+ ↦ ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) ) 𝑤 ⊆ 𝑣 ) |
| 86 | 78 85 | r19.29a | ⊢ ( ( ( ( 𝐴 ≠ ∅ ∧ 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝐴 ⊆ 𝑋 ) ∧ 𝑣 ∈ ( metUnif ‘ 𝐷 ) ) ∧ 𝑢 = ( 𝑣 ∩ ( 𝐴 × 𝐴 ) ) ) → ( ran ( 𝑎 ∈ ℝ+ ↦ ( ◡ ( 𝐷 ↾ ( 𝐴 × 𝐴 ) ) “ ( 0 [,) 𝑎 ) ) ) ∩ 𝒫 𝑢 ) ≠ ∅ ) |
| 87 | 86 | r19.29an | ⊢ ( ( ( 𝐴 ≠ ∅ ∧ 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝐴 ⊆ 𝑋 ) ∧ ∃ 𝑣 ∈ ( metUnif ‘ 𝐷 ) 𝑢 = ( 𝑣 ∩ ( 𝐴 × 𝐴 ) ) ) → ( ran ( 𝑎 ∈ ℝ+ ↦ ( ◡ ( 𝐷 ↾ ( 𝐴 × 𝐴 ) ) “ ( 0 [,) 𝑎 ) ) ) ∩ 𝒫 𝑢 ) ≠ ∅ ) |
| 88 | 26 87 | jca | ⊢ ( ( ( 𝐴 ≠ ∅ ∧ 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝐴 ⊆ 𝑋 ) ∧ ∃ 𝑣 ∈ ( metUnif ‘ 𝐷 ) 𝑢 = ( 𝑣 ∩ ( 𝐴 × 𝐴 ) ) ) → ( 𝑢 ∈ 𝒫 ( 𝐴 × 𝐴 ) ∧ ( ran ( 𝑎 ∈ ℝ+ ↦ ( ◡ ( 𝐷 ↾ ( 𝐴 × 𝐴 ) ) “ ( 0 [,) 𝑎 ) ) ) ∩ 𝒫 𝑢 ) ≠ ∅ ) ) |
| 89 | simprl | ⊢ ( ( ( 𝐴 ≠ ∅ ∧ 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝐴 ⊆ 𝑋 ) ∧ ( 𝑢 ∈ 𝒫 ( 𝐴 × 𝐴 ) ∧ ( ran ( 𝑎 ∈ ℝ+ ↦ ( ◡ ( 𝐷 ↾ ( 𝐴 × 𝐴 ) ) “ ( 0 [,) 𝑎 ) ) ) ∩ 𝒫 𝑢 ) ≠ ∅ ) ) → 𝑢 ∈ 𝒫 ( 𝐴 × 𝐴 ) ) | |
| 90 | 89 | elpwid | ⊢ ( ( ( 𝐴 ≠ ∅ ∧ 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝐴 ⊆ 𝑋 ) ∧ ( 𝑢 ∈ 𝒫 ( 𝐴 × 𝐴 ) ∧ ( ran ( 𝑎 ∈ ℝ+ ↦ ( ◡ ( 𝐷 ↾ ( 𝐴 × 𝐴 ) ) “ ( 0 [,) 𝑎 ) ) ) ∩ 𝒫 𝑢 ) ≠ ∅ ) ) → 𝑢 ⊆ ( 𝐴 × 𝐴 ) ) |
| 91 | simpl3 | ⊢ ( ( ( 𝐴 ≠ ∅ ∧ 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝐴 ⊆ 𝑋 ) ∧ ( 𝑢 ∈ 𝒫 ( 𝐴 × 𝐴 ) ∧ ( ran ( 𝑎 ∈ ℝ+ ↦ ( ◡ ( 𝐷 ↾ ( 𝐴 × 𝐴 ) ) “ ( 0 [,) 𝑎 ) ) ) ∩ 𝒫 𝑢 ) ≠ ∅ ) ) → 𝐴 ⊆ 𝑋 ) | |
| 92 | xpss12 | ⊢ ( ( 𝐴 ⊆ 𝑋 ∧ 𝐴 ⊆ 𝑋 ) → ( 𝐴 × 𝐴 ) ⊆ ( 𝑋 × 𝑋 ) ) | |
| 93 | 91 91 92 | syl2anc | ⊢ ( ( ( 𝐴 ≠ ∅ ∧ 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝐴 ⊆ 𝑋 ) ∧ ( 𝑢 ∈ 𝒫 ( 𝐴 × 𝐴 ) ∧ ( ran ( 𝑎 ∈ ℝ+ ↦ ( ◡ ( 𝐷 ↾ ( 𝐴 × 𝐴 ) ) “ ( 0 [,) 𝑎 ) ) ) ∩ 𝒫 𝑢 ) ≠ ∅ ) ) → ( 𝐴 × 𝐴 ) ⊆ ( 𝑋 × 𝑋 ) ) |
| 94 | 90 93 | sstrd | ⊢ ( ( ( 𝐴 ≠ ∅ ∧ 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝐴 ⊆ 𝑋 ) ∧ ( 𝑢 ∈ 𝒫 ( 𝐴 × 𝐴 ) ∧ ( ran ( 𝑎 ∈ ℝ+ ↦ ( ◡ ( 𝐷 ↾ ( 𝐴 × 𝐴 ) ) “ ( 0 [,) 𝑎 ) ) ) ∩ 𝒫 𝑢 ) ≠ ∅ ) ) → 𝑢 ⊆ ( 𝑋 × 𝑋 ) ) |
| 95 | difssd | ⊢ ( ( ( 𝐴 ≠ ∅ ∧ 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝐴 ⊆ 𝑋 ) ∧ ( 𝑢 ∈ 𝒫 ( 𝐴 × 𝐴 ) ∧ ( ran ( 𝑎 ∈ ℝ+ ↦ ( ◡ ( 𝐷 ↾ ( 𝐴 × 𝐴 ) ) “ ( 0 [,) 𝑎 ) ) ) ∩ 𝒫 𝑢 ) ≠ ∅ ) ) → ( ( 𝑋 × 𝑋 ) ∖ ( 𝐴 × 𝐴 ) ) ⊆ ( 𝑋 × 𝑋 ) ) | |
| 96 | 94 95 | unssd | ⊢ ( ( ( 𝐴 ≠ ∅ ∧ 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝐴 ⊆ 𝑋 ) ∧ ( 𝑢 ∈ 𝒫 ( 𝐴 × 𝐴 ) ∧ ( ran ( 𝑎 ∈ ℝ+ ↦ ( ◡ ( 𝐷 ↾ ( 𝐴 × 𝐴 ) ) “ ( 0 [,) 𝑎 ) ) ) ∩ 𝒫 𝑢 ) ≠ ∅ ) ) → ( 𝑢 ∪ ( ( 𝑋 × 𝑋 ) ∖ ( 𝐴 × 𝐴 ) ) ) ⊆ ( 𝑋 × 𝑋 ) ) |
| 97 | simplr | ⊢ ( ( ( ( ( ( 𝐴 ≠ ∅ ∧ 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝐴 ⊆ 𝑋 ) ∧ ( 𝑢 ∈ 𝒫 ( 𝐴 × 𝐴 ) ∧ ( ran ( 𝑎 ∈ ℝ+ ↦ ( ◡ ( 𝐷 ↾ ( 𝐴 × 𝐴 ) ) “ ( 0 [,) 𝑎 ) ) ) ∩ 𝒫 𝑢 ) ≠ ∅ ) ) ∧ 𝑣 ∈ 𝒫 𝑢 ) ∧ 𝑏 ∈ ℝ+ ) ∧ 𝑣 = ( ◡ ( 𝐷 ↾ ( 𝐴 × 𝐴 ) ) “ ( 0 [,) 𝑏 ) ) ) → 𝑏 ∈ ℝ+ ) | |
| 98 | eqidd | ⊢ ( ( ( ( ( ( 𝐴 ≠ ∅ ∧ 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝐴 ⊆ 𝑋 ) ∧ ( 𝑢 ∈ 𝒫 ( 𝐴 × 𝐴 ) ∧ ( ran ( 𝑎 ∈ ℝ+ ↦ ( ◡ ( 𝐷 ↾ ( 𝐴 × 𝐴 ) ) “ ( 0 [,) 𝑎 ) ) ) ∩ 𝒫 𝑢 ) ≠ ∅ ) ) ∧ 𝑣 ∈ 𝒫 𝑢 ) ∧ 𝑏 ∈ ℝ+ ) ∧ 𝑣 = ( ◡ ( 𝐷 ↾ ( 𝐴 × 𝐴 ) ) “ ( 0 [,) 𝑏 ) ) ) → ( ◡ 𝐷 “ ( 0 [,) 𝑏 ) ) = ( ◡ 𝐷 “ ( 0 [,) 𝑏 ) ) ) | |
| 99 | 4 | imaeq2d | ⊢ ( 𝑎 = 𝑏 → ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) = ( ◡ 𝐷 “ ( 0 [,) 𝑏 ) ) ) |
| 100 | 99 | rspceeqv | ⊢ ( ( 𝑏 ∈ ℝ+ ∧ ( ◡ 𝐷 “ ( 0 [,) 𝑏 ) ) = ( ◡ 𝐷 “ ( 0 [,) 𝑏 ) ) ) → ∃ 𝑎 ∈ ℝ+ ( ◡ 𝐷 “ ( 0 [,) 𝑏 ) ) = ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) ) |
| 101 | 97 98 100 | syl2anc | ⊢ ( ( ( ( ( ( 𝐴 ≠ ∅ ∧ 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝐴 ⊆ 𝑋 ) ∧ ( 𝑢 ∈ 𝒫 ( 𝐴 × 𝐴 ) ∧ ( ran ( 𝑎 ∈ ℝ+ ↦ ( ◡ ( 𝐷 ↾ ( 𝐴 × 𝐴 ) ) “ ( 0 [,) 𝑎 ) ) ) ∩ 𝒫 𝑢 ) ≠ ∅ ) ) ∧ 𝑣 ∈ 𝒫 𝑢 ) ∧ 𝑏 ∈ ℝ+ ) ∧ 𝑣 = ( ◡ ( 𝐷 ↾ ( 𝐴 × 𝐴 ) ) “ ( 0 [,) 𝑏 ) ) ) → ∃ 𝑎 ∈ ℝ+ ( ◡ 𝐷 “ ( 0 [,) 𝑏 ) ) = ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) ) |
| 102 | 43 | ad4antr | ⊢ ( ( ( ( ( ( 𝐴 ≠ ∅ ∧ 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝐴 ⊆ 𝑋 ) ∧ ( 𝑢 ∈ 𝒫 ( 𝐴 × 𝐴 ) ∧ ( ran ( 𝑎 ∈ ℝ+ ↦ ( ◡ ( 𝐷 ↾ ( 𝐴 × 𝐴 ) ) “ ( 0 [,) 𝑎 ) ) ) ∩ 𝒫 𝑢 ) ≠ ∅ ) ) ∧ 𝑣 ∈ 𝒫 𝑢 ) ∧ 𝑏 ∈ ℝ+ ) ∧ 𝑣 = ( ◡ ( 𝐷 ↾ ( 𝐴 × 𝐴 ) ) “ ( 0 [,) 𝑏 ) ) ) → 𝐷 ∈ ( PsMet ‘ 𝑋 ) ) |
| 103 | cnvexg | ⊢ ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) → ◡ 𝐷 ∈ V ) | |
| 104 | imaexg | ⊢ ( ◡ 𝐷 ∈ V → ( ◡ 𝐷 “ ( 0 [,) 𝑏 ) ) ∈ V ) | |
| 105 | 74 | elrnmpt | ⊢ ( ( ◡ 𝐷 “ ( 0 [,) 𝑏 ) ) ∈ V → ( ( ◡ 𝐷 “ ( 0 [,) 𝑏 ) ) ∈ ran ( 𝑎 ∈ ℝ+ ↦ ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) ) ↔ ∃ 𝑎 ∈ ℝ+ ( ◡ 𝐷 “ ( 0 [,) 𝑏 ) ) = ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) ) ) |
| 106 | 102 103 104 105 | 4syl | ⊢ ( ( ( ( ( ( 𝐴 ≠ ∅ ∧ 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝐴 ⊆ 𝑋 ) ∧ ( 𝑢 ∈ 𝒫 ( 𝐴 × 𝐴 ) ∧ ( ran ( 𝑎 ∈ ℝ+ ↦ ( ◡ ( 𝐷 ↾ ( 𝐴 × 𝐴 ) ) “ ( 0 [,) 𝑎 ) ) ) ∩ 𝒫 𝑢 ) ≠ ∅ ) ) ∧ 𝑣 ∈ 𝒫 𝑢 ) ∧ 𝑏 ∈ ℝ+ ) ∧ 𝑣 = ( ◡ ( 𝐷 ↾ ( 𝐴 × 𝐴 ) ) “ ( 0 [,) 𝑏 ) ) ) → ( ( ◡ 𝐷 “ ( 0 [,) 𝑏 ) ) ∈ ran ( 𝑎 ∈ ℝ+ ↦ ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) ) ↔ ∃ 𝑎 ∈ ℝ+ ( ◡ 𝐷 “ ( 0 [,) 𝑏 ) ) = ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) ) ) |
| 107 | 101 106 | mpbird | ⊢ ( ( ( ( ( ( 𝐴 ≠ ∅ ∧ 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝐴 ⊆ 𝑋 ) ∧ ( 𝑢 ∈ 𝒫 ( 𝐴 × 𝐴 ) ∧ ( ran ( 𝑎 ∈ ℝ+ ↦ ( ◡ ( 𝐷 ↾ ( 𝐴 × 𝐴 ) ) “ ( 0 [,) 𝑎 ) ) ) ∩ 𝒫 𝑢 ) ≠ ∅ ) ) ∧ 𝑣 ∈ 𝒫 𝑢 ) ∧ 𝑏 ∈ ℝ+ ) ∧ 𝑣 = ( ◡ ( 𝐷 ↾ ( 𝐴 × 𝐴 ) ) “ ( 0 [,) 𝑏 ) ) ) → ( ◡ 𝐷 “ ( 0 [,) 𝑏 ) ) ∈ ran ( 𝑎 ∈ ℝ+ ↦ ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) ) ) |
| 108 | cnvimass | ⊢ ( ◡ 𝐷 “ ( 0 [,) 𝑏 ) ) ⊆ dom 𝐷 | |
| 109 | 108 44 | fssdm | ⊢ ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) → ( ◡ 𝐷 “ ( 0 [,) 𝑏 ) ) ⊆ ( 𝑋 × 𝑋 ) ) |
| 110 | 102 109 | syl | ⊢ ( ( ( ( ( ( 𝐴 ≠ ∅ ∧ 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝐴 ⊆ 𝑋 ) ∧ ( 𝑢 ∈ 𝒫 ( 𝐴 × 𝐴 ) ∧ ( ran ( 𝑎 ∈ ℝ+ ↦ ( ◡ ( 𝐷 ↾ ( 𝐴 × 𝐴 ) ) “ ( 0 [,) 𝑎 ) ) ) ∩ 𝒫 𝑢 ) ≠ ∅ ) ) ∧ 𝑣 ∈ 𝒫 𝑢 ) ∧ 𝑏 ∈ ℝ+ ) ∧ 𝑣 = ( ◡ ( 𝐷 ↾ ( 𝐴 × 𝐴 ) ) “ ( 0 [,) 𝑏 ) ) ) → ( ◡ 𝐷 “ ( 0 [,) 𝑏 ) ) ⊆ ( 𝑋 × 𝑋 ) ) |
| 111 | ssdif0 | ⊢ ( ( ◡ 𝐷 “ ( 0 [,) 𝑏 ) ) ⊆ ( 𝑋 × 𝑋 ) ↔ ( ( ◡ 𝐷 “ ( 0 [,) 𝑏 ) ) ∖ ( 𝑋 × 𝑋 ) ) = ∅ ) | |
| 112 | 110 111 | sylib | ⊢ ( ( ( ( ( ( 𝐴 ≠ ∅ ∧ 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝐴 ⊆ 𝑋 ) ∧ ( 𝑢 ∈ 𝒫 ( 𝐴 × 𝐴 ) ∧ ( ran ( 𝑎 ∈ ℝ+ ↦ ( ◡ ( 𝐷 ↾ ( 𝐴 × 𝐴 ) ) “ ( 0 [,) 𝑎 ) ) ) ∩ 𝒫 𝑢 ) ≠ ∅ ) ) ∧ 𝑣 ∈ 𝒫 𝑢 ) ∧ 𝑏 ∈ ℝ+ ) ∧ 𝑣 = ( ◡ ( 𝐷 ↾ ( 𝐴 × 𝐴 ) ) “ ( 0 [,) 𝑏 ) ) ) → ( ( ◡ 𝐷 “ ( 0 [,) 𝑏 ) ) ∖ ( 𝑋 × 𝑋 ) ) = ∅ ) |
| 113 | 0ss | ⊢ ∅ ⊆ 𝑢 | |
| 114 | 112 113 | eqsstrdi | ⊢ ( ( ( ( ( ( 𝐴 ≠ ∅ ∧ 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝐴 ⊆ 𝑋 ) ∧ ( 𝑢 ∈ 𝒫 ( 𝐴 × 𝐴 ) ∧ ( ran ( 𝑎 ∈ ℝ+ ↦ ( ◡ ( 𝐷 ↾ ( 𝐴 × 𝐴 ) ) “ ( 0 [,) 𝑎 ) ) ) ∩ 𝒫 𝑢 ) ≠ ∅ ) ) ∧ 𝑣 ∈ 𝒫 𝑢 ) ∧ 𝑏 ∈ ℝ+ ) ∧ 𝑣 = ( ◡ ( 𝐷 ↾ ( 𝐴 × 𝐴 ) ) “ ( 0 [,) 𝑏 ) ) ) → ( ( ◡ 𝐷 “ ( 0 [,) 𝑏 ) ) ∖ ( 𝑋 × 𝑋 ) ) ⊆ 𝑢 ) |
| 115 | respreima | ⊢ ( Fun 𝐷 → ( ◡ ( 𝐷 ↾ ( 𝐴 × 𝐴 ) ) “ ( 0 [,) 𝑏 ) ) = ( ( ◡ 𝐷 “ ( 0 [,) 𝑏 ) ) ∩ ( 𝐴 × 𝐴 ) ) ) | |
| 116 | 102 44 45 115 | 4syl | ⊢ ( ( ( ( ( ( 𝐴 ≠ ∅ ∧ 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝐴 ⊆ 𝑋 ) ∧ ( 𝑢 ∈ 𝒫 ( 𝐴 × 𝐴 ) ∧ ( ran ( 𝑎 ∈ ℝ+ ↦ ( ◡ ( 𝐷 ↾ ( 𝐴 × 𝐴 ) ) “ ( 0 [,) 𝑎 ) ) ) ∩ 𝒫 𝑢 ) ≠ ∅ ) ) ∧ 𝑣 ∈ 𝒫 𝑢 ) ∧ 𝑏 ∈ ℝ+ ) ∧ 𝑣 = ( ◡ ( 𝐷 ↾ ( 𝐴 × 𝐴 ) ) “ ( 0 [,) 𝑏 ) ) ) → ( ◡ ( 𝐷 ↾ ( 𝐴 × 𝐴 ) ) “ ( 0 [,) 𝑏 ) ) = ( ( ◡ 𝐷 “ ( 0 [,) 𝑏 ) ) ∩ ( 𝐴 × 𝐴 ) ) ) |
| 117 | simpr | ⊢ ( ( ( ( ( ( 𝐴 ≠ ∅ ∧ 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝐴 ⊆ 𝑋 ) ∧ ( 𝑢 ∈ 𝒫 ( 𝐴 × 𝐴 ) ∧ ( ran ( 𝑎 ∈ ℝ+ ↦ ( ◡ ( 𝐷 ↾ ( 𝐴 × 𝐴 ) ) “ ( 0 [,) 𝑎 ) ) ) ∩ 𝒫 𝑢 ) ≠ ∅ ) ) ∧ 𝑣 ∈ 𝒫 𝑢 ) ∧ 𝑏 ∈ ℝ+ ) ∧ 𝑣 = ( ◡ ( 𝐷 ↾ ( 𝐴 × 𝐴 ) ) “ ( 0 [,) 𝑏 ) ) ) → 𝑣 = ( ◡ ( 𝐷 ↾ ( 𝐴 × 𝐴 ) ) “ ( 0 [,) 𝑏 ) ) ) | |
| 118 | simpllr | ⊢ ( ( ( ( ( ( 𝐴 ≠ ∅ ∧ 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝐴 ⊆ 𝑋 ) ∧ ( 𝑢 ∈ 𝒫 ( 𝐴 × 𝐴 ) ∧ ( ran ( 𝑎 ∈ ℝ+ ↦ ( ◡ ( 𝐷 ↾ ( 𝐴 × 𝐴 ) ) “ ( 0 [,) 𝑎 ) ) ) ∩ 𝒫 𝑢 ) ≠ ∅ ) ) ∧ 𝑣 ∈ 𝒫 𝑢 ) ∧ 𝑏 ∈ ℝ+ ) ∧ 𝑣 = ( ◡ ( 𝐷 ↾ ( 𝐴 × 𝐴 ) ) “ ( 0 [,) 𝑏 ) ) ) → 𝑣 ∈ 𝒫 𝑢 ) | |
| 119 | 118 | elpwid | ⊢ ( ( ( ( ( ( 𝐴 ≠ ∅ ∧ 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝐴 ⊆ 𝑋 ) ∧ ( 𝑢 ∈ 𝒫 ( 𝐴 × 𝐴 ) ∧ ( ran ( 𝑎 ∈ ℝ+ ↦ ( ◡ ( 𝐷 ↾ ( 𝐴 × 𝐴 ) ) “ ( 0 [,) 𝑎 ) ) ) ∩ 𝒫 𝑢 ) ≠ ∅ ) ) ∧ 𝑣 ∈ 𝒫 𝑢 ) ∧ 𝑏 ∈ ℝ+ ) ∧ 𝑣 = ( ◡ ( 𝐷 ↾ ( 𝐴 × 𝐴 ) ) “ ( 0 [,) 𝑏 ) ) ) → 𝑣 ⊆ 𝑢 ) |
| 120 | 117 119 | eqsstrrd | ⊢ ( ( ( ( ( ( 𝐴 ≠ ∅ ∧ 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝐴 ⊆ 𝑋 ) ∧ ( 𝑢 ∈ 𝒫 ( 𝐴 × 𝐴 ) ∧ ( ran ( 𝑎 ∈ ℝ+ ↦ ( ◡ ( 𝐷 ↾ ( 𝐴 × 𝐴 ) ) “ ( 0 [,) 𝑎 ) ) ) ∩ 𝒫 𝑢 ) ≠ ∅ ) ) ∧ 𝑣 ∈ 𝒫 𝑢 ) ∧ 𝑏 ∈ ℝ+ ) ∧ 𝑣 = ( ◡ ( 𝐷 ↾ ( 𝐴 × 𝐴 ) ) “ ( 0 [,) 𝑏 ) ) ) → ( ◡ ( 𝐷 ↾ ( 𝐴 × 𝐴 ) ) “ ( 0 [,) 𝑏 ) ) ⊆ 𝑢 ) |
| 121 | 116 120 | eqsstrrd | ⊢ ( ( ( ( ( ( 𝐴 ≠ ∅ ∧ 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝐴 ⊆ 𝑋 ) ∧ ( 𝑢 ∈ 𝒫 ( 𝐴 × 𝐴 ) ∧ ( ran ( 𝑎 ∈ ℝ+ ↦ ( ◡ ( 𝐷 ↾ ( 𝐴 × 𝐴 ) ) “ ( 0 [,) 𝑎 ) ) ) ∩ 𝒫 𝑢 ) ≠ ∅ ) ) ∧ 𝑣 ∈ 𝒫 𝑢 ) ∧ 𝑏 ∈ ℝ+ ) ∧ 𝑣 = ( ◡ ( 𝐷 ↾ ( 𝐴 × 𝐴 ) ) “ ( 0 [,) 𝑏 ) ) ) → ( ( ◡ 𝐷 “ ( 0 [,) 𝑏 ) ) ∩ ( 𝐴 × 𝐴 ) ) ⊆ 𝑢 ) |
| 122 | 114 121 | unssd | ⊢ ( ( ( ( ( ( 𝐴 ≠ ∅ ∧ 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝐴 ⊆ 𝑋 ) ∧ ( 𝑢 ∈ 𝒫 ( 𝐴 × 𝐴 ) ∧ ( ran ( 𝑎 ∈ ℝ+ ↦ ( ◡ ( 𝐷 ↾ ( 𝐴 × 𝐴 ) ) “ ( 0 [,) 𝑎 ) ) ) ∩ 𝒫 𝑢 ) ≠ ∅ ) ) ∧ 𝑣 ∈ 𝒫 𝑢 ) ∧ 𝑏 ∈ ℝ+ ) ∧ 𝑣 = ( ◡ ( 𝐷 ↾ ( 𝐴 × 𝐴 ) ) “ ( 0 [,) 𝑏 ) ) ) → ( ( ( ◡ 𝐷 “ ( 0 [,) 𝑏 ) ) ∖ ( 𝑋 × 𝑋 ) ) ∪ ( ( ◡ 𝐷 “ ( 0 [,) 𝑏 ) ) ∩ ( 𝐴 × 𝐴 ) ) ) ⊆ 𝑢 ) |
| 123 | ssundif | ⊢ ( ( ◡ 𝐷 “ ( 0 [,) 𝑏 ) ) ⊆ ( 𝑢 ∪ ( ( 𝑋 × 𝑋 ) ∖ ( 𝐴 × 𝐴 ) ) ) ↔ ( ( ◡ 𝐷 “ ( 0 [,) 𝑏 ) ) ∖ 𝑢 ) ⊆ ( ( 𝑋 × 𝑋 ) ∖ ( 𝐴 × 𝐴 ) ) ) | |
| 124 | difcom | ⊢ ( ( ( ◡ 𝐷 “ ( 0 [,) 𝑏 ) ) ∖ 𝑢 ) ⊆ ( ( 𝑋 × 𝑋 ) ∖ ( 𝐴 × 𝐴 ) ) ↔ ( ( ◡ 𝐷 “ ( 0 [,) 𝑏 ) ) ∖ ( ( 𝑋 × 𝑋 ) ∖ ( 𝐴 × 𝐴 ) ) ) ⊆ 𝑢 ) | |
| 125 | difdif2 | ⊢ ( ( ◡ 𝐷 “ ( 0 [,) 𝑏 ) ) ∖ ( ( 𝑋 × 𝑋 ) ∖ ( 𝐴 × 𝐴 ) ) ) = ( ( ( ◡ 𝐷 “ ( 0 [,) 𝑏 ) ) ∖ ( 𝑋 × 𝑋 ) ) ∪ ( ( ◡ 𝐷 “ ( 0 [,) 𝑏 ) ) ∩ ( 𝐴 × 𝐴 ) ) ) | |
| 126 | 125 | sseq1i | ⊢ ( ( ( ◡ 𝐷 “ ( 0 [,) 𝑏 ) ) ∖ ( ( 𝑋 × 𝑋 ) ∖ ( 𝐴 × 𝐴 ) ) ) ⊆ 𝑢 ↔ ( ( ( ◡ 𝐷 “ ( 0 [,) 𝑏 ) ) ∖ ( 𝑋 × 𝑋 ) ) ∪ ( ( ◡ 𝐷 “ ( 0 [,) 𝑏 ) ) ∩ ( 𝐴 × 𝐴 ) ) ) ⊆ 𝑢 ) |
| 127 | 123 124 126 | 3bitri | ⊢ ( ( ◡ 𝐷 “ ( 0 [,) 𝑏 ) ) ⊆ ( 𝑢 ∪ ( ( 𝑋 × 𝑋 ) ∖ ( 𝐴 × 𝐴 ) ) ) ↔ ( ( ( ◡ 𝐷 “ ( 0 [,) 𝑏 ) ) ∖ ( 𝑋 × 𝑋 ) ) ∪ ( ( ◡ 𝐷 “ ( 0 [,) 𝑏 ) ) ∩ ( 𝐴 × 𝐴 ) ) ) ⊆ 𝑢 ) |
| 128 | 122 127 | sylibr | ⊢ ( ( ( ( ( ( 𝐴 ≠ ∅ ∧ 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝐴 ⊆ 𝑋 ) ∧ ( 𝑢 ∈ 𝒫 ( 𝐴 × 𝐴 ) ∧ ( ran ( 𝑎 ∈ ℝ+ ↦ ( ◡ ( 𝐷 ↾ ( 𝐴 × 𝐴 ) ) “ ( 0 [,) 𝑎 ) ) ) ∩ 𝒫 𝑢 ) ≠ ∅ ) ) ∧ 𝑣 ∈ 𝒫 𝑢 ) ∧ 𝑏 ∈ ℝ+ ) ∧ 𝑣 = ( ◡ ( 𝐷 ↾ ( 𝐴 × 𝐴 ) ) “ ( 0 [,) 𝑏 ) ) ) → ( ◡ 𝐷 “ ( 0 [,) 𝑏 ) ) ⊆ ( 𝑢 ∪ ( ( 𝑋 × 𝑋 ) ∖ ( 𝐴 × 𝐴 ) ) ) ) |
| 129 | sseq1 | ⊢ ( 𝑤 = ( ◡ 𝐷 “ ( 0 [,) 𝑏 ) ) → ( 𝑤 ⊆ ( 𝑢 ∪ ( ( 𝑋 × 𝑋 ) ∖ ( 𝐴 × 𝐴 ) ) ) ↔ ( ◡ 𝐷 “ ( 0 [,) 𝑏 ) ) ⊆ ( 𝑢 ∪ ( ( 𝑋 × 𝑋 ) ∖ ( 𝐴 × 𝐴 ) ) ) ) ) | |
| 130 | 129 | rspcev | ⊢ ( ( ( ◡ 𝐷 “ ( 0 [,) 𝑏 ) ) ∈ ran ( 𝑎 ∈ ℝ+ ↦ ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) ) ∧ ( ◡ 𝐷 “ ( 0 [,) 𝑏 ) ) ⊆ ( 𝑢 ∪ ( ( 𝑋 × 𝑋 ) ∖ ( 𝐴 × 𝐴 ) ) ) ) → ∃ 𝑤 ∈ ran ( 𝑎 ∈ ℝ+ ↦ ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) ) 𝑤 ⊆ ( 𝑢 ∪ ( ( 𝑋 × 𝑋 ) ∖ ( 𝐴 × 𝐴 ) ) ) ) |
| 131 | 107 128 130 | syl2anc | ⊢ ( ( ( ( ( ( 𝐴 ≠ ∅ ∧ 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝐴 ⊆ 𝑋 ) ∧ ( 𝑢 ∈ 𝒫 ( 𝐴 × 𝐴 ) ∧ ( ran ( 𝑎 ∈ ℝ+ ↦ ( ◡ ( 𝐷 ↾ ( 𝐴 × 𝐴 ) ) “ ( 0 [,) 𝑎 ) ) ) ∩ 𝒫 𝑢 ) ≠ ∅ ) ) ∧ 𝑣 ∈ 𝒫 𝑢 ) ∧ 𝑏 ∈ ℝ+ ) ∧ 𝑣 = ( ◡ ( 𝐷 ↾ ( 𝐴 × 𝐴 ) ) “ ( 0 [,) 𝑏 ) ) ) → ∃ 𝑤 ∈ ran ( 𝑎 ∈ ℝ+ ↦ ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) ) 𝑤 ⊆ ( 𝑢 ∪ ( ( 𝑋 × 𝑋 ) ∖ ( 𝐴 × 𝐴 ) ) ) ) |
| 132 | elin | ⊢ ( 𝑣 ∈ ( ran ( 𝑎 ∈ ℝ+ ↦ ( ◡ ( 𝐷 ↾ ( 𝐴 × 𝐴 ) ) “ ( 0 [,) 𝑎 ) ) ) ∩ 𝒫 𝑢 ) ↔ ( 𝑣 ∈ ran ( 𝑎 ∈ ℝ+ ↦ ( ◡ ( 𝐷 ↾ ( 𝐴 × 𝐴 ) ) “ ( 0 [,) 𝑎 ) ) ) ∧ 𝑣 ∈ 𝒫 𝑢 ) ) | |
| 133 | 6 | elrnmpt | ⊢ ( 𝑣 ∈ V → ( 𝑣 ∈ ran ( 𝑎 ∈ ℝ+ ↦ ( ◡ ( 𝐷 ↾ ( 𝐴 × 𝐴 ) ) “ ( 0 [,) 𝑎 ) ) ) ↔ ∃ 𝑏 ∈ ℝ+ 𝑣 = ( ◡ ( 𝐷 ↾ ( 𝐴 × 𝐴 ) ) “ ( 0 [,) 𝑏 ) ) ) ) |
| 134 | 133 | elv | ⊢ ( 𝑣 ∈ ran ( 𝑎 ∈ ℝ+ ↦ ( ◡ ( 𝐷 ↾ ( 𝐴 × 𝐴 ) ) “ ( 0 [,) 𝑎 ) ) ) ↔ ∃ 𝑏 ∈ ℝ+ 𝑣 = ( ◡ ( 𝐷 ↾ ( 𝐴 × 𝐴 ) ) “ ( 0 [,) 𝑏 ) ) ) |
| 135 | 134 | anbi1i | ⊢ ( ( 𝑣 ∈ ran ( 𝑎 ∈ ℝ+ ↦ ( ◡ ( 𝐷 ↾ ( 𝐴 × 𝐴 ) ) “ ( 0 [,) 𝑎 ) ) ) ∧ 𝑣 ∈ 𝒫 𝑢 ) ↔ ( ∃ 𝑏 ∈ ℝ+ 𝑣 = ( ◡ ( 𝐷 ↾ ( 𝐴 × 𝐴 ) ) “ ( 0 [,) 𝑏 ) ) ∧ 𝑣 ∈ 𝒫 𝑢 ) ) |
| 136 | ancom | ⊢ ( ( ∃ 𝑏 ∈ ℝ+ 𝑣 = ( ◡ ( 𝐷 ↾ ( 𝐴 × 𝐴 ) ) “ ( 0 [,) 𝑏 ) ) ∧ 𝑣 ∈ 𝒫 𝑢 ) ↔ ( 𝑣 ∈ 𝒫 𝑢 ∧ ∃ 𝑏 ∈ ℝ+ 𝑣 = ( ◡ ( 𝐷 ↾ ( 𝐴 × 𝐴 ) ) “ ( 0 [,) 𝑏 ) ) ) ) | |
| 137 | 132 135 136 | 3bitri | ⊢ ( 𝑣 ∈ ( ran ( 𝑎 ∈ ℝ+ ↦ ( ◡ ( 𝐷 ↾ ( 𝐴 × 𝐴 ) ) “ ( 0 [,) 𝑎 ) ) ) ∩ 𝒫 𝑢 ) ↔ ( 𝑣 ∈ 𝒫 𝑢 ∧ ∃ 𝑏 ∈ ℝ+ 𝑣 = ( ◡ ( 𝐷 ↾ ( 𝐴 × 𝐴 ) ) “ ( 0 [,) 𝑏 ) ) ) ) |
| 138 | 137 | exbii | ⊢ ( ∃ 𝑣 𝑣 ∈ ( ran ( 𝑎 ∈ ℝ+ ↦ ( ◡ ( 𝐷 ↾ ( 𝐴 × 𝐴 ) ) “ ( 0 [,) 𝑎 ) ) ) ∩ 𝒫 𝑢 ) ↔ ∃ 𝑣 ( 𝑣 ∈ 𝒫 𝑢 ∧ ∃ 𝑏 ∈ ℝ+ 𝑣 = ( ◡ ( 𝐷 ↾ ( 𝐴 × 𝐴 ) ) “ ( 0 [,) 𝑏 ) ) ) ) |
| 139 | n0 | ⊢ ( ( ran ( 𝑎 ∈ ℝ+ ↦ ( ◡ ( 𝐷 ↾ ( 𝐴 × 𝐴 ) ) “ ( 0 [,) 𝑎 ) ) ) ∩ 𝒫 𝑢 ) ≠ ∅ ↔ ∃ 𝑣 𝑣 ∈ ( ran ( 𝑎 ∈ ℝ+ ↦ ( ◡ ( 𝐷 ↾ ( 𝐴 × 𝐴 ) ) “ ( 0 [,) 𝑎 ) ) ) ∩ 𝒫 𝑢 ) ) | |
| 140 | df-rex | ⊢ ( ∃ 𝑣 ∈ 𝒫 𝑢 ∃ 𝑏 ∈ ℝ+ 𝑣 = ( ◡ ( 𝐷 ↾ ( 𝐴 × 𝐴 ) ) “ ( 0 [,) 𝑏 ) ) ↔ ∃ 𝑣 ( 𝑣 ∈ 𝒫 𝑢 ∧ ∃ 𝑏 ∈ ℝ+ 𝑣 = ( ◡ ( 𝐷 ↾ ( 𝐴 × 𝐴 ) ) “ ( 0 [,) 𝑏 ) ) ) ) | |
| 141 | 138 139 140 | 3bitr4i | ⊢ ( ( ran ( 𝑎 ∈ ℝ+ ↦ ( ◡ ( 𝐷 ↾ ( 𝐴 × 𝐴 ) ) “ ( 0 [,) 𝑎 ) ) ) ∩ 𝒫 𝑢 ) ≠ ∅ ↔ ∃ 𝑣 ∈ 𝒫 𝑢 ∃ 𝑏 ∈ ℝ+ 𝑣 = ( ◡ ( 𝐷 ↾ ( 𝐴 × 𝐴 ) ) “ ( 0 [,) 𝑏 ) ) ) |
| 142 | 141 | biimpi | ⊢ ( ( ran ( 𝑎 ∈ ℝ+ ↦ ( ◡ ( 𝐷 ↾ ( 𝐴 × 𝐴 ) ) “ ( 0 [,) 𝑎 ) ) ) ∩ 𝒫 𝑢 ) ≠ ∅ → ∃ 𝑣 ∈ 𝒫 𝑢 ∃ 𝑏 ∈ ℝ+ 𝑣 = ( ◡ ( 𝐷 ↾ ( 𝐴 × 𝐴 ) ) “ ( 0 [,) 𝑏 ) ) ) |
| 143 | 142 | ad2antll | ⊢ ( ( ( 𝐴 ≠ ∅ ∧ 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝐴 ⊆ 𝑋 ) ∧ ( 𝑢 ∈ 𝒫 ( 𝐴 × 𝐴 ) ∧ ( ran ( 𝑎 ∈ ℝ+ ↦ ( ◡ ( 𝐷 ↾ ( 𝐴 × 𝐴 ) ) “ ( 0 [,) 𝑎 ) ) ) ∩ 𝒫 𝑢 ) ≠ ∅ ) ) → ∃ 𝑣 ∈ 𝒫 𝑢 ∃ 𝑏 ∈ ℝ+ 𝑣 = ( ◡ ( 𝐷 ↾ ( 𝐴 × 𝐴 ) ) “ ( 0 [,) 𝑏 ) ) ) |
| 144 | 131 143 | r19.29vva | ⊢ ( ( ( 𝐴 ≠ ∅ ∧ 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝐴 ⊆ 𝑋 ) ∧ ( 𝑢 ∈ 𝒫 ( 𝐴 × 𝐴 ) ∧ ( ran ( 𝑎 ∈ ℝ+ ↦ ( ◡ ( 𝐷 ↾ ( 𝐴 × 𝐴 ) ) “ ( 0 [,) 𝑎 ) ) ) ∩ 𝒫 𝑢 ) ≠ ∅ ) ) → ∃ 𝑤 ∈ ran ( 𝑎 ∈ ℝ+ ↦ ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) ) 𝑤 ⊆ ( 𝑢 ∪ ( ( 𝑋 × 𝑋 ) ∖ ( 𝐴 × 𝐴 ) ) ) ) |
| 145 | 81 | adantr | ⊢ ( ( ( 𝐴 ≠ ∅ ∧ 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝐴 ⊆ 𝑋 ) ∧ ( 𝑢 ∈ 𝒫 ( 𝐴 × 𝐴 ) ∧ ( ran ( 𝑎 ∈ ℝ+ ↦ ( ◡ ( 𝐷 ↾ ( 𝐴 × 𝐴 ) ) “ ( 0 [,) 𝑎 ) ) ) ∩ 𝒫 𝑢 ) ≠ ∅ ) ) → 𝑋 ≠ ∅ ) |
| 146 | 43 | adantr | ⊢ ( ( ( 𝐴 ≠ ∅ ∧ 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝐴 ⊆ 𝑋 ) ∧ ( 𝑢 ∈ 𝒫 ( 𝐴 × 𝐴 ) ∧ ( ran ( 𝑎 ∈ ℝ+ ↦ ( ◡ ( 𝐷 ↾ ( 𝐴 × 𝐴 ) ) “ ( 0 [,) 𝑎 ) ) ) ∩ 𝒫 𝑢 ) ≠ ∅ ) ) → 𝐷 ∈ ( PsMet ‘ 𝑋 ) ) |
| 147 | metuel | ⊢ ( ( 𝑋 ≠ ∅ ∧ 𝐷 ∈ ( PsMet ‘ 𝑋 ) ) → ( ( 𝑢 ∪ ( ( 𝑋 × 𝑋 ) ∖ ( 𝐴 × 𝐴 ) ) ) ∈ ( metUnif ‘ 𝐷 ) ↔ ( ( 𝑢 ∪ ( ( 𝑋 × 𝑋 ) ∖ ( 𝐴 × 𝐴 ) ) ) ⊆ ( 𝑋 × 𝑋 ) ∧ ∃ 𝑤 ∈ ran ( 𝑎 ∈ ℝ+ ↦ ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) ) 𝑤 ⊆ ( 𝑢 ∪ ( ( 𝑋 × 𝑋 ) ∖ ( 𝐴 × 𝐴 ) ) ) ) ) ) | |
| 148 | 145 146 147 | syl2anc | ⊢ ( ( ( 𝐴 ≠ ∅ ∧ 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝐴 ⊆ 𝑋 ) ∧ ( 𝑢 ∈ 𝒫 ( 𝐴 × 𝐴 ) ∧ ( ran ( 𝑎 ∈ ℝ+ ↦ ( ◡ ( 𝐷 ↾ ( 𝐴 × 𝐴 ) ) “ ( 0 [,) 𝑎 ) ) ) ∩ 𝒫 𝑢 ) ≠ ∅ ) ) → ( ( 𝑢 ∪ ( ( 𝑋 × 𝑋 ) ∖ ( 𝐴 × 𝐴 ) ) ) ∈ ( metUnif ‘ 𝐷 ) ↔ ( ( 𝑢 ∪ ( ( 𝑋 × 𝑋 ) ∖ ( 𝐴 × 𝐴 ) ) ) ⊆ ( 𝑋 × 𝑋 ) ∧ ∃ 𝑤 ∈ ran ( 𝑎 ∈ ℝ+ ↦ ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) ) 𝑤 ⊆ ( 𝑢 ∪ ( ( 𝑋 × 𝑋 ) ∖ ( 𝐴 × 𝐴 ) ) ) ) ) ) |
| 149 | 96 144 148 | mpbir2and | ⊢ ( ( ( 𝐴 ≠ ∅ ∧ 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝐴 ⊆ 𝑋 ) ∧ ( 𝑢 ∈ 𝒫 ( 𝐴 × 𝐴 ) ∧ ( ran ( 𝑎 ∈ ℝ+ ↦ ( ◡ ( 𝐷 ↾ ( 𝐴 × 𝐴 ) ) “ ( 0 [,) 𝑎 ) ) ) ∩ 𝒫 𝑢 ) ≠ ∅ ) ) → ( 𝑢 ∪ ( ( 𝑋 × 𝑋 ) ∖ ( 𝐴 × 𝐴 ) ) ) ∈ ( metUnif ‘ 𝐷 ) ) |
| 150 | indir | ⊢ ( ( 𝑢 ∪ ( ( 𝑋 × 𝑋 ) ∖ ( 𝐴 × 𝐴 ) ) ) ∩ ( 𝐴 × 𝐴 ) ) = ( ( 𝑢 ∩ ( 𝐴 × 𝐴 ) ) ∪ ( ( ( 𝑋 × 𝑋 ) ∖ ( 𝐴 × 𝐴 ) ) ∩ ( 𝐴 × 𝐴 ) ) ) | |
| 151 | disjdifr | ⊢ ( ( ( 𝑋 × 𝑋 ) ∖ ( 𝐴 × 𝐴 ) ) ∩ ( 𝐴 × 𝐴 ) ) = ∅ | |
| 152 | 151 | uneq2i | ⊢ ( ( 𝑢 ∩ ( 𝐴 × 𝐴 ) ) ∪ ( ( ( 𝑋 × 𝑋 ) ∖ ( 𝐴 × 𝐴 ) ) ∩ ( 𝐴 × 𝐴 ) ) ) = ( ( 𝑢 ∩ ( 𝐴 × 𝐴 ) ) ∪ ∅ ) |
| 153 | un0 | ⊢ ( ( 𝑢 ∩ ( 𝐴 × 𝐴 ) ) ∪ ∅ ) = ( 𝑢 ∩ ( 𝐴 × 𝐴 ) ) | |
| 154 | 150 152 153 | 3eqtri | ⊢ ( ( 𝑢 ∪ ( ( 𝑋 × 𝑋 ) ∖ ( 𝐴 × 𝐴 ) ) ) ∩ ( 𝐴 × 𝐴 ) ) = ( 𝑢 ∩ ( 𝐴 × 𝐴 ) ) |
| 155 | dfss2 | ⊢ ( 𝑢 ⊆ ( 𝐴 × 𝐴 ) ↔ ( 𝑢 ∩ ( 𝐴 × 𝐴 ) ) = 𝑢 ) | |
| 156 | 90 155 | sylib | ⊢ ( ( ( 𝐴 ≠ ∅ ∧ 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝐴 ⊆ 𝑋 ) ∧ ( 𝑢 ∈ 𝒫 ( 𝐴 × 𝐴 ) ∧ ( ran ( 𝑎 ∈ ℝ+ ↦ ( ◡ ( 𝐷 ↾ ( 𝐴 × 𝐴 ) ) “ ( 0 [,) 𝑎 ) ) ) ∩ 𝒫 𝑢 ) ≠ ∅ ) ) → ( 𝑢 ∩ ( 𝐴 × 𝐴 ) ) = 𝑢 ) |
| 157 | 154 156 | eqtr2id | ⊢ ( ( ( 𝐴 ≠ ∅ ∧ 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝐴 ⊆ 𝑋 ) ∧ ( 𝑢 ∈ 𝒫 ( 𝐴 × 𝐴 ) ∧ ( ran ( 𝑎 ∈ ℝ+ ↦ ( ◡ ( 𝐷 ↾ ( 𝐴 × 𝐴 ) ) “ ( 0 [,) 𝑎 ) ) ) ∩ 𝒫 𝑢 ) ≠ ∅ ) ) → 𝑢 = ( ( 𝑢 ∪ ( ( 𝑋 × 𝑋 ) ∖ ( 𝐴 × 𝐴 ) ) ) ∩ ( 𝐴 × 𝐴 ) ) ) |
| 158 | ineq1 | ⊢ ( 𝑣 = ( 𝑢 ∪ ( ( 𝑋 × 𝑋 ) ∖ ( 𝐴 × 𝐴 ) ) ) → ( 𝑣 ∩ ( 𝐴 × 𝐴 ) ) = ( ( 𝑢 ∪ ( ( 𝑋 × 𝑋 ) ∖ ( 𝐴 × 𝐴 ) ) ) ∩ ( 𝐴 × 𝐴 ) ) ) | |
| 159 | 158 | rspceeqv | ⊢ ( ( ( 𝑢 ∪ ( ( 𝑋 × 𝑋 ) ∖ ( 𝐴 × 𝐴 ) ) ) ∈ ( metUnif ‘ 𝐷 ) ∧ 𝑢 = ( ( 𝑢 ∪ ( ( 𝑋 × 𝑋 ) ∖ ( 𝐴 × 𝐴 ) ) ) ∩ ( 𝐴 × 𝐴 ) ) ) → ∃ 𝑣 ∈ ( metUnif ‘ 𝐷 ) 𝑢 = ( 𝑣 ∩ ( 𝐴 × 𝐴 ) ) ) |
| 160 | 149 157 159 | syl2anc | ⊢ ( ( ( 𝐴 ≠ ∅ ∧ 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝐴 ⊆ 𝑋 ) ∧ ( 𝑢 ∈ 𝒫 ( 𝐴 × 𝐴 ) ∧ ( ran ( 𝑎 ∈ ℝ+ ↦ ( ◡ ( 𝐷 ↾ ( 𝐴 × 𝐴 ) ) “ ( 0 [,) 𝑎 ) ) ) ∩ 𝒫 𝑢 ) ≠ ∅ ) ) → ∃ 𝑣 ∈ ( metUnif ‘ 𝐷 ) 𝑢 = ( 𝑣 ∩ ( 𝐴 × 𝐴 ) ) ) |
| 161 | 88 160 | impbida | ⊢ ( ( 𝐴 ≠ ∅ ∧ 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝐴 ⊆ 𝑋 ) → ( ∃ 𝑣 ∈ ( metUnif ‘ 𝐷 ) 𝑢 = ( 𝑣 ∩ ( 𝐴 × 𝐴 ) ) ↔ ( 𝑢 ∈ 𝒫 ( 𝐴 × 𝐴 ) ∧ ( ran ( 𝑎 ∈ ℝ+ ↦ ( ◡ ( 𝐷 ↾ ( 𝐴 × 𝐴 ) ) “ ( 0 [,) 𝑎 ) ) ) ∩ 𝒫 𝑢 ) ≠ ∅ ) ) ) |
| 162 | eqid | ⊢ ( 𝑣 ∈ ( metUnif ‘ 𝐷 ) ↦ ( 𝑣 ∩ ( 𝐴 × 𝐴 ) ) ) = ( 𝑣 ∈ ( metUnif ‘ 𝐷 ) ↦ ( 𝑣 ∩ ( 𝐴 × 𝐴 ) ) ) | |
| 163 | 162 | elrnmpt | ⊢ ( 𝑢 ∈ V → ( 𝑢 ∈ ran ( 𝑣 ∈ ( metUnif ‘ 𝐷 ) ↦ ( 𝑣 ∩ ( 𝐴 × 𝐴 ) ) ) ↔ ∃ 𝑣 ∈ ( metUnif ‘ 𝐷 ) 𝑢 = ( 𝑣 ∩ ( 𝐴 × 𝐴 ) ) ) ) |
| 164 | 163 | elv | ⊢ ( 𝑢 ∈ ran ( 𝑣 ∈ ( metUnif ‘ 𝐷 ) ↦ ( 𝑣 ∩ ( 𝐴 × 𝐴 ) ) ) ↔ ∃ 𝑣 ∈ ( metUnif ‘ 𝐷 ) 𝑢 = ( 𝑣 ∩ ( 𝐴 × 𝐴 ) ) ) |
| 165 | pweq | ⊢ ( 𝑣 = 𝑢 → 𝒫 𝑣 = 𝒫 𝑢 ) | |
| 166 | 165 | ineq2d | ⊢ ( 𝑣 = 𝑢 → ( ran ( 𝑎 ∈ ℝ+ ↦ ( ◡ ( 𝐷 ↾ ( 𝐴 × 𝐴 ) ) “ ( 0 [,) 𝑎 ) ) ) ∩ 𝒫 𝑣 ) = ( ran ( 𝑎 ∈ ℝ+ ↦ ( ◡ ( 𝐷 ↾ ( 𝐴 × 𝐴 ) ) “ ( 0 [,) 𝑎 ) ) ) ∩ 𝒫 𝑢 ) ) |
| 167 | 166 | neeq1d | ⊢ ( 𝑣 = 𝑢 → ( ( ran ( 𝑎 ∈ ℝ+ ↦ ( ◡ ( 𝐷 ↾ ( 𝐴 × 𝐴 ) ) “ ( 0 [,) 𝑎 ) ) ) ∩ 𝒫 𝑣 ) ≠ ∅ ↔ ( ran ( 𝑎 ∈ ℝ+ ↦ ( ◡ ( 𝐷 ↾ ( 𝐴 × 𝐴 ) ) “ ( 0 [,) 𝑎 ) ) ) ∩ 𝒫 𝑢 ) ≠ ∅ ) ) |
| 168 | 167 | elrab | ⊢ ( 𝑢 ∈ { 𝑣 ∈ 𝒫 ( 𝐴 × 𝐴 ) ∣ ( ran ( 𝑎 ∈ ℝ+ ↦ ( ◡ ( 𝐷 ↾ ( 𝐴 × 𝐴 ) ) “ ( 0 [,) 𝑎 ) ) ) ∩ 𝒫 𝑣 ) ≠ ∅ } ↔ ( 𝑢 ∈ 𝒫 ( 𝐴 × 𝐴 ) ∧ ( ran ( 𝑎 ∈ ℝ+ ↦ ( ◡ ( 𝐷 ↾ ( 𝐴 × 𝐴 ) ) “ ( 0 [,) 𝑎 ) ) ) ∩ 𝒫 𝑢 ) ≠ ∅ ) ) |
| 169 | 161 164 168 | 3bitr4g | ⊢ ( ( 𝐴 ≠ ∅ ∧ 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝐴 ⊆ 𝑋 ) → ( 𝑢 ∈ ran ( 𝑣 ∈ ( metUnif ‘ 𝐷 ) ↦ ( 𝑣 ∩ ( 𝐴 × 𝐴 ) ) ) ↔ 𝑢 ∈ { 𝑣 ∈ 𝒫 ( 𝐴 × 𝐴 ) ∣ ( ran ( 𝑎 ∈ ℝ+ ↦ ( ◡ ( 𝐷 ↾ ( 𝐴 × 𝐴 ) ) “ ( 0 [,) 𝑎 ) ) ) ∩ 𝒫 𝑣 ) ≠ ∅ } ) ) |
| 170 | 169 | eqrdv | ⊢ ( ( 𝐴 ≠ ∅ ∧ 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝐴 ⊆ 𝑋 ) → ran ( 𝑣 ∈ ( metUnif ‘ 𝐷 ) ↦ ( 𝑣 ∩ ( 𝐴 × 𝐴 ) ) ) = { 𝑣 ∈ 𝒫 ( 𝐴 × 𝐴 ) ∣ ( ran ( 𝑎 ∈ ℝ+ ↦ ( ◡ ( 𝐷 ↾ ( 𝐴 × 𝐴 ) ) “ ( 0 [,) 𝑎 ) ) ) ∩ 𝒫 𝑣 ) ≠ ∅ } ) |
| 171 | 18 170 | eqtrd | ⊢ ( ( 𝐴 ≠ ∅ ∧ 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝐴 ⊆ 𝑋 ) → ( ( metUnif ‘ 𝐷 ) ↾t ( 𝐴 × 𝐴 ) ) = { 𝑣 ∈ 𝒫 ( 𝐴 × 𝐴 ) ∣ ( ran ( 𝑎 ∈ ℝ+ ↦ ( ◡ ( 𝐷 ↾ ( 𝐴 × 𝐴 ) ) “ ( 0 [,) 𝑎 ) ) ) ∩ 𝒫 𝑣 ) ≠ ∅ } ) |
| 172 | 11 13 171 | 3eqtr4rd | ⊢ ( ( 𝐴 ≠ ∅ ∧ 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝐴 ⊆ 𝑋 ) → ( ( metUnif ‘ 𝐷 ) ↾t ( 𝐴 × 𝐴 ) ) = ( metUnif ‘ ( 𝐷 ↾ ( 𝐴 × 𝐴 ) ) ) ) |