This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The filter generating class gives a filter for every filter base. (Contributed by Jeff Hankins, 3-Sep-2009) (Revised by Stefan O'Rear, 2-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fgval | ⊢ ( 𝐹 ∈ ( fBas ‘ 𝑋 ) → ( 𝑋 filGen 𝐹 ) = { 𝑥 ∈ 𝒫 𝑋 ∣ ( 𝐹 ∩ 𝒫 𝑥 ) ≠ ∅ } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-fg | ⊢ filGen = ( 𝑣 ∈ V , 𝑓 ∈ ( fBas ‘ 𝑣 ) ↦ { 𝑥 ∈ 𝒫 𝑣 ∣ ( 𝑓 ∩ 𝒫 𝑥 ) ≠ ∅ } ) | |
| 2 | 1 | a1i | ⊢ ( 𝐹 ∈ ( fBas ‘ 𝑋 ) → filGen = ( 𝑣 ∈ V , 𝑓 ∈ ( fBas ‘ 𝑣 ) ↦ { 𝑥 ∈ 𝒫 𝑣 ∣ ( 𝑓 ∩ 𝒫 𝑥 ) ≠ ∅ } ) ) |
| 3 | pweq | ⊢ ( 𝑣 = 𝑋 → 𝒫 𝑣 = 𝒫 𝑋 ) | |
| 4 | 3 | adantr | ⊢ ( ( 𝑣 = 𝑋 ∧ 𝑓 = 𝐹 ) → 𝒫 𝑣 = 𝒫 𝑋 ) |
| 5 | ineq1 | ⊢ ( 𝑓 = 𝐹 → ( 𝑓 ∩ 𝒫 𝑥 ) = ( 𝐹 ∩ 𝒫 𝑥 ) ) | |
| 6 | 5 | neeq1d | ⊢ ( 𝑓 = 𝐹 → ( ( 𝑓 ∩ 𝒫 𝑥 ) ≠ ∅ ↔ ( 𝐹 ∩ 𝒫 𝑥 ) ≠ ∅ ) ) |
| 7 | 6 | adantl | ⊢ ( ( 𝑣 = 𝑋 ∧ 𝑓 = 𝐹 ) → ( ( 𝑓 ∩ 𝒫 𝑥 ) ≠ ∅ ↔ ( 𝐹 ∩ 𝒫 𝑥 ) ≠ ∅ ) ) |
| 8 | 4 7 | rabeqbidv | ⊢ ( ( 𝑣 = 𝑋 ∧ 𝑓 = 𝐹 ) → { 𝑥 ∈ 𝒫 𝑣 ∣ ( 𝑓 ∩ 𝒫 𝑥 ) ≠ ∅ } = { 𝑥 ∈ 𝒫 𝑋 ∣ ( 𝐹 ∩ 𝒫 𝑥 ) ≠ ∅ } ) |
| 9 | 8 | adantl | ⊢ ( ( 𝐹 ∈ ( fBas ‘ 𝑋 ) ∧ ( 𝑣 = 𝑋 ∧ 𝑓 = 𝐹 ) ) → { 𝑥 ∈ 𝒫 𝑣 ∣ ( 𝑓 ∩ 𝒫 𝑥 ) ≠ ∅ } = { 𝑥 ∈ 𝒫 𝑋 ∣ ( 𝐹 ∩ 𝒫 𝑥 ) ≠ ∅ } ) |
| 10 | fveq2 | ⊢ ( 𝑣 = 𝑋 → ( fBas ‘ 𝑣 ) = ( fBas ‘ 𝑋 ) ) | |
| 11 | 10 | adantl | ⊢ ( ( 𝐹 ∈ ( fBas ‘ 𝑋 ) ∧ 𝑣 = 𝑋 ) → ( fBas ‘ 𝑣 ) = ( fBas ‘ 𝑋 ) ) |
| 12 | elfvex | ⊢ ( 𝐹 ∈ ( fBas ‘ 𝑋 ) → 𝑋 ∈ V ) | |
| 13 | id | ⊢ ( 𝐹 ∈ ( fBas ‘ 𝑋 ) → 𝐹 ∈ ( fBas ‘ 𝑋 ) ) | |
| 14 | elfvdm | ⊢ ( 𝐹 ∈ ( fBas ‘ 𝑋 ) → 𝑋 ∈ dom fBas ) | |
| 15 | pwexg | ⊢ ( 𝑋 ∈ dom fBas → 𝒫 𝑋 ∈ V ) | |
| 16 | rabexg | ⊢ ( 𝒫 𝑋 ∈ V → { 𝑥 ∈ 𝒫 𝑋 ∣ ( 𝐹 ∩ 𝒫 𝑥 ) ≠ ∅ } ∈ V ) | |
| 17 | 14 15 16 | 3syl | ⊢ ( 𝐹 ∈ ( fBas ‘ 𝑋 ) → { 𝑥 ∈ 𝒫 𝑋 ∣ ( 𝐹 ∩ 𝒫 𝑥 ) ≠ ∅ } ∈ V ) |
| 18 | 2 9 11 12 13 17 | ovmpodx | ⊢ ( 𝐹 ∈ ( fBas ‘ 𝑋 ) → ( 𝑋 filGen 𝐹 ) = { 𝑥 ∈ 𝒫 𝑋 ∣ ( 𝐹 ∩ 𝒫 𝑥 ) ≠ ∅ } ) |