This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The preimage of a restricted function. (Contributed by Jeff Madsen, 2-Sep-2009)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | respreima | ⊢ ( Fun 𝐹 → ( ◡ ( 𝐹 ↾ 𝐵 ) “ 𝐴 ) = ( ( ◡ 𝐹 “ 𝐴 ) ∩ 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | funfn | ⊢ ( Fun 𝐹 ↔ 𝐹 Fn dom 𝐹 ) | |
| 2 | elin | ⊢ ( 𝑥 ∈ ( 𝐵 ∩ dom 𝐹 ) ↔ ( 𝑥 ∈ 𝐵 ∧ 𝑥 ∈ dom 𝐹 ) ) | |
| 3 | 2 | biancomi | ⊢ ( 𝑥 ∈ ( 𝐵 ∩ dom 𝐹 ) ↔ ( 𝑥 ∈ dom 𝐹 ∧ 𝑥 ∈ 𝐵 ) ) |
| 4 | 3 | anbi1i | ⊢ ( ( 𝑥 ∈ ( 𝐵 ∩ dom 𝐹 ) ∧ ( ( 𝐹 ↾ 𝐵 ) ‘ 𝑥 ) ∈ 𝐴 ) ↔ ( ( 𝑥 ∈ dom 𝐹 ∧ 𝑥 ∈ 𝐵 ) ∧ ( ( 𝐹 ↾ 𝐵 ) ‘ 𝑥 ) ∈ 𝐴 ) ) |
| 5 | fvres | ⊢ ( 𝑥 ∈ 𝐵 → ( ( 𝐹 ↾ 𝐵 ) ‘ 𝑥 ) = ( 𝐹 ‘ 𝑥 ) ) | |
| 6 | 5 | eleq1d | ⊢ ( 𝑥 ∈ 𝐵 → ( ( ( 𝐹 ↾ 𝐵 ) ‘ 𝑥 ) ∈ 𝐴 ↔ ( 𝐹 ‘ 𝑥 ) ∈ 𝐴 ) ) |
| 7 | 6 | adantl | ⊢ ( ( 𝑥 ∈ dom 𝐹 ∧ 𝑥 ∈ 𝐵 ) → ( ( ( 𝐹 ↾ 𝐵 ) ‘ 𝑥 ) ∈ 𝐴 ↔ ( 𝐹 ‘ 𝑥 ) ∈ 𝐴 ) ) |
| 8 | 7 | pm5.32i | ⊢ ( ( ( 𝑥 ∈ dom 𝐹 ∧ 𝑥 ∈ 𝐵 ) ∧ ( ( 𝐹 ↾ 𝐵 ) ‘ 𝑥 ) ∈ 𝐴 ) ↔ ( ( 𝑥 ∈ dom 𝐹 ∧ 𝑥 ∈ 𝐵 ) ∧ ( 𝐹 ‘ 𝑥 ) ∈ 𝐴 ) ) |
| 9 | 4 8 | bitri | ⊢ ( ( 𝑥 ∈ ( 𝐵 ∩ dom 𝐹 ) ∧ ( ( 𝐹 ↾ 𝐵 ) ‘ 𝑥 ) ∈ 𝐴 ) ↔ ( ( 𝑥 ∈ dom 𝐹 ∧ 𝑥 ∈ 𝐵 ) ∧ ( 𝐹 ‘ 𝑥 ) ∈ 𝐴 ) ) |
| 10 | 9 | a1i | ⊢ ( 𝐹 Fn dom 𝐹 → ( ( 𝑥 ∈ ( 𝐵 ∩ dom 𝐹 ) ∧ ( ( 𝐹 ↾ 𝐵 ) ‘ 𝑥 ) ∈ 𝐴 ) ↔ ( ( 𝑥 ∈ dom 𝐹 ∧ 𝑥 ∈ 𝐵 ) ∧ ( 𝐹 ‘ 𝑥 ) ∈ 𝐴 ) ) ) |
| 11 | an32 | ⊢ ( ( ( 𝑥 ∈ dom 𝐹 ∧ 𝑥 ∈ 𝐵 ) ∧ ( 𝐹 ‘ 𝑥 ) ∈ 𝐴 ) ↔ ( ( 𝑥 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑥 ) ∈ 𝐴 ) ∧ 𝑥 ∈ 𝐵 ) ) | |
| 12 | 10 11 | bitrdi | ⊢ ( 𝐹 Fn dom 𝐹 → ( ( 𝑥 ∈ ( 𝐵 ∩ dom 𝐹 ) ∧ ( ( 𝐹 ↾ 𝐵 ) ‘ 𝑥 ) ∈ 𝐴 ) ↔ ( ( 𝑥 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑥 ) ∈ 𝐴 ) ∧ 𝑥 ∈ 𝐵 ) ) ) |
| 13 | fnfun | ⊢ ( 𝐹 Fn dom 𝐹 → Fun 𝐹 ) | |
| 14 | 13 | funresd | ⊢ ( 𝐹 Fn dom 𝐹 → Fun ( 𝐹 ↾ 𝐵 ) ) |
| 15 | dmres | ⊢ dom ( 𝐹 ↾ 𝐵 ) = ( 𝐵 ∩ dom 𝐹 ) | |
| 16 | df-fn | ⊢ ( ( 𝐹 ↾ 𝐵 ) Fn ( 𝐵 ∩ dom 𝐹 ) ↔ ( Fun ( 𝐹 ↾ 𝐵 ) ∧ dom ( 𝐹 ↾ 𝐵 ) = ( 𝐵 ∩ dom 𝐹 ) ) ) | |
| 17 | 14 15 16 | sylanblrc | ⊢ ( 𝐹 Fn dom 𝐹 → ( 𝐹 ↾ 𝐵 ) Fn ( 𝐵 ∩ dom 𝐹 ) ) |
| 18 | elpreima | ⊢ ( ( 𝐹 ↾ 𝐵 ) Fn ( 𝐵 ∩ dom 𝐹 ) → ( 𝑥 ∈ ( ◡ ( 𝐹 ↾ 𝐵 ) “ 𝐴 ) ↔ ( 𝑥 ∈ ( 𝐵 ∩ dom 𝐹 ) ∧ ( ( 𝐹 ↾ 𝐵 ) ‘ 𝑥 ) ∈ 𝐴 ) ) ) | |
| 19 | 17 18 | syl | ⊢ ( 𝐹 Fn dom 𝐹 → ( 𝑥 ∈ ( ◡ ( 𝐹 ↾ 𝐵 ) “ 𝐴 ) ↔ ( 𝑥 ∈ ( 𝐵 ∩ dom 𝐹 ) ∧ ( ( 𝐹 ↾ 𝐵 ) ‘ 𝑥 ) ∈ 𝐴 ) ) ) |
| 20 | elin | ⊢ ( 𝑥 ∈ ( ( ◡ 𝐹 “ 𝐴 ) ∩ 𝐵 ) ↔ ( 𝑥 ∈ ( ◡ 𝐹 “ 𝐴 ) ∧ 𝑥 ∈ 𝐵 ) ) | |
| 21 | elpreima | ⊢ ( 𝐹 Fn dom 𝐹 → ( 𝑥 ∈ ( ◡ 𝐹 “ 𝐴 ) ↔ ( 𝑥 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑥 ) ∈ 𝐴 ) ) ) | |
| 22 | 21 | anbi1d | ⊢ ( 𝐹 Fn dom 𝐹 → ( ( 𝑥 ∈ ( ◡ 𝐹 “ 𝐴 ) ∧ 𝑥 ∈ 𝐵 ) ↔ ( ( 𝑥 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑥 ) ∈ 𝐴 ) ∧ 𝑥 ∈ 𝐵 ) ) ) |
| 23 | 20 22 | bitrid | ⊢ ( 𝐹 Fn dom 𝐹 → ( 𝑥 ∈ ( ( ◡ 𝐹 “ 𝐴 ) ∩ 𝐵 ) ↔ ( ( 𝑥 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑥 ) ∈ 𝐴 ) ∧ 𝑥 ∈ 𝐵 ) ) ) |
| 24 | 12 19 23 | 3bitr4d | ⊢ ( 𝐹 Fn dom 𝐹 → ( 𝑥 ∈ ( ◡ ( 𝐹 ↾ 𝐵 ) “ 𝐴 ) ↔ 𝑥 ∈ ( ( ◡ 𝐹 “ 𝐴 ) ∩ 𝐵 ) ) ) |
| 25 | 1 24 | sylbi | ⊢ ( Fun 𝐹 → ( 𝑥 ∈ ( ◡ ( 𝐹 ↾ 𝐵 ) “ 𝐴 ) ↔ 𝑥 ∈ ( ( ◡ 𝐹 “ 𝐴 ) ∩ 𝐵 ) ) ) |
| 26 | 25 | eqrdv | ⊢ ( Fun 𝐹 → ( ◡ ( 𝐹 ↾ 𝐵 ) “ 𝐴 ) = ( ( ◡ 𝐹 “ 𝐴 ) ∩ 𝐵 ) ) |