This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of the uniform structure generated by metric D . (Contributed by Thierry Arnoux, 1-Dec-2017) (Revised by Thierry Arnoux, 11-Feb-2018)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | metuval | ⊢ ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) → ( metUnif ‘ 𝐷 ) = ( ( 𝑋 × 𝑋 ) filGen ran ( 𝑎 ∈ ℝ+ ↦ ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-metu | ⊢ metUnif = ( 𝑑 ∈ ∪ ran PsMet ↦ ( ( dom dom 𝑑 × dom dom 𝑑 ) filGen ran ( 𝑎 ∈ ℝ+ ↦ ( ◡ 𝑑 “ ( 0 [,) 𝑎 ) ) ) ) ) | |
| 2 | simpr | ⊢ ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝑑 = 𝐷 ) → 𝑑 = 𝐷 ) | |
| 3 | 2 | dmeqd | ⊢ ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝑑 = 𝐷 ) → dom 𝑑 = dom 𝐷 ) |
| 4 | 3 | dmeqd | ⊢ ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝑑 = 𝐷 ) → dom dom 𝑑 = dom dom 𝐷 ) |
| 5 | psmetdmdm | ⊢ ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) → 𝑋 = dom dom 𝐷 ) | |
| 6 | 5 | adantr | ⊢ ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝑑 = 𝐷 ) → 𝑋 = dom dom 𝐷 ) |
| 7 | 4 6 | eqtr4d | ⊢ ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝑑 = 𝐷 ) → dom dom 𝑑 = 𝑋 ) |
| 8 | 7 | sqxpeqd | ⊢ ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝑑 = 𝐷 ) → ( dom dom 𝑑 × dom dom 𝑑 ) = ( 𝑋 × 𝑋 ) ) |
| 9 | simplr | ⊢ ( ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝑑 = 𝐷 ) ∧ 𝑎 ∈ ℝ+ ) → 𝑑 = 𝐷 ) | |
| 10 | 9 | cnveqd | ⊢ ( ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝑑 = 𝐷 ) ∧ 𝑎 ∈ ℝ+ ) → ◡ 𝑑 = ◡ 𝐷 ) |
| 11 | 10 | imaeq1d | ⊢ ( ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝑑 = 𝐷 ) ∧ 𝑎 ∈ ℝ+ ) → ( ◡ 𝑑 “ ( 0 [,) 𝑎 ) ) = ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) ) |
| 12 | 11 | mpteq2dva | ⊢ ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝑑 = 𝐷 ) → ( 𝑎 ∈ ℝ+ ↦ ( ◡ 𝑑 “ ( 0 [,) 𝑎 ) ) ) = ( 𝑎 ∈ ℝ+ ↦ ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) ) ) |
| 13 | 12 | rneqd | ⊢ ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝑑 = 𝐷 ) → ran ( 𝑎 ∈ ℝ+ ↦ ( ◡ 𝑑 “ ( 0 [,) 𝑎 ) ) ) = ran ( 𝑎 ∈ ℝ+ ↦ ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) ) ) |
| 14 | 8 13 | oveq12d | ⊢ ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝑑 = 𝐷 ) → ( ( dom dom 𝑑 × dom dom 𝑑 ) filGen ran ( 𝑎 ∈ ℝ+ ↦ ( ◡ 𝑑 “ ( 0 [,) 𝑎 ) ) ) ) = ( ( 𝑋 × 𝑋 ) filGen ran ( 𝑎 ∈ ℝ+ ↦ ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) ) ) ) |
| 15 | elfvunirn | ⊢ ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) → 𝐷 ∈ ∪ ran PsMet ) | |
| 16 | ovexd | ⊢ ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) → ( ( 𝑋 × 𝑋 ) filGen ran ( 𝑎 ∈ ℝ+ ↦ ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) ) ) ∈ V ) | |
| 17 | 1 14 15 16 | fvmptd2 | ⊢ ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) → ( metUnif ‘ 𝐷 ) = ( ( 𝑋 × 𝑋 ) filGen ran ( 𝑎 ∈ ℝ+ ↦ ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) ) ) ) |