This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Uniform continuity in metric spaces. Compare the order of the quantifiers with metcn . (Contributed by Thierry Arnoux, 26-Jan-2018) (Revised by Thierry Arnoux, 11-Feb-2018)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | metucn.u | ⊢ 𝑈 = ( metUnif ‘ 𝐶 ) | |
| metucn.v | ⊢ 𝑉 = ( metUnif ‘ 𝐷 ) | ||
| metucn.x | ⊢ ( 𝜑 → 𝑋 ≠ ∅ ) | ||
| metucn.y | ⊢ ( 𝜑 → 𝑌 ≠ ∅ ) | ||
| metucn.c | ⊢ ( 𝜑 → 𝐶 ∈ ( PsMet ‘ 𝑋 ) ) | ||
| metucn.d | ⊢ ( 𝜑 → 𝐷 ∈ ( PsMet ‘ 𝑌 ) ) | ||
| Assertion | metucn | ⊢ ( 𝜑 → ( 𝐹 ∈ ( 𝑈 Cnu 𝑉 ) ↔ ( 𝐹 : 𝑋 ⟶ 𝑌 ∧ ∀ 𝑑 ∈ ℝ+ ∃ 𝑐 ∈ ℝ+ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( ( 𝑥 𝐶 𝑦 ) < 𝑐 → ( ( 𝐹 ‘ 𝑥 ) 𝐷 ( 𝐹 ‘ 𝑦 ) ) < 𝑑 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | metucn.u | ⊢ 𝑈 = ( metUnif ‘ 𝐶 ) | |
| 2 | metucn.v | ⊢ 𝑉 = ( metUnif ‘ 𝐷 ) | |
| 3 | metucn.x | ⊢ ( 𝜑 → 𝑋 ≠ ∅ ) | |
| 4 | metucn.y | ⊢ ( 𝜑 → 𝑌 ≠ ∅ ) | |
| 5 | metucn.c | ⊢ ( 𝜑 → 𝐶 ∈ ( PsMet ‘ 𝑋 ) ) | |
| 6 | metucn.d | ⊢ ( 𝜑 → 𝐷 ∈ ( PsMet ‘ 𝑌 ) ) | |
| 7 | metuval | ⊢ ( 𝐶 ∈ ( PsMet ‘ 𝑋 ) → ( metUnif ‘ 𝐶 ) = ( ( 𝑋 × 𝑋 ) filGen ran ( 𝑎 ∈ ℝ+ ↦ ( ◡ 𝐶 “ ( 0 [,) 𝑎 ) ) ) ) ) | |
| 8 | 5 7 | syl | ⊢ ( 𝜑 → ( metUnif ‘ 𝐶 ) = ( ( 𝑋 × 𝑋 ) filGen ran ( 𝑎 ∈ ℝ+ ↦ ( ◡ 𝐶 “ ( 0 [,) 𝑎 ) ) ) ) ) |
| 9 | 1 8 | eqtrid | ⊢ ( 𝜑 → 𝑈 = ( ( 𝑋 × 𝑋 ) filGen ran ( 𝑎 ∈ ℝ+ ↦ ( ◡ 𝐶 “ ( 0 [,) 𝑎 ) ) ) ) ) |
| 10 | metuval | ⊢ ( 𝐷 ∈ ( PsMet ‘ 𝑌 ) → ( metUnif ‘ 𝐷 ) = ( ( 𝑌 × 𝑌 ) filGen ran ( 𝑏 ∈ ℝ+ ↦ ( ◡ 𝐷 “ ( 0 [,) 𝑏 ) ) ) ) ) | |
| 11 | 6 10 | syl | ⊢ ( 𝜑 → ( metUnif ‘ 𝐷 ) = ( ( 𝑌 × 𝑌 ) filGen ran ( 𝑏 ∈ ℝ+ ↦ ( ◡ 𝐷 “ ( 0 [,) 𝑏 ) ) ) ) ) |
| 12 | 2 11 | eqtrid | ⊢ ( 𝜑 → 𝑉 = ( ( 𝑌 × 𝑌 ) filGen ran ( 𝑏 ∈ ℝ+ ↦ ( ◡ 𝐷 “ ( 0 [,) 𝑏 ) ) ) ) ) |
| 13 | 9 12 | oveq12d | ⊢ ( 𝜑 → ( 𝑈 Cnu 𝑉 ) = ( ( ( 𝑋 × 𝑋 ) filGen ran ( 𝑎 ∈ ℝ+ ↦ ( ◡ 𝐶 “ ( 0 [,) 𝑎 ) ) ) ) Cnu ( ( 𝑌 × 𝑌 ) filGen ran ( 𝑏 ∈ ℝ+ ↦ ( ◡ 𝐷 “ ( 0 [,) 𝑏 ) ) ) ) ) ) |
| 14 | 13 | eleq2d | ⊢ ( 𝜑 → ( 𝐹 ∈ ( 𝑈 Cnu 𝑉 ) ↔ 𝐹 ∈ ( ( ( 𝑋 × 𝑋 ) filGen ran ( 𝑎 ∈ ℝ+ ↦ ( ◡ 𝐶 “ ( 0 [,) 𝑎 ) ) ) ) Cnu ( ( 𝑌 × 𝑌 ) filGen ran ( 𝑏 ∈ ℝ+ ↦ ( ◡ 𝐷 “ ( 0 [,) 𝑏 ) ) ) ) ) ) ) |
| 15 | eqid | ⊢ ( ( 𝑋 × 𝑋 ) filGen ran ( 𝑎 ∈ ℝ+ ↦ ( ◡ 𝐶 “ ( 0 [,) 𝑎 ) ) ) ) = ( ( 𝑋 × 𝑋 ) filGen ran ( 𝑎 ∈ ℝ+ ↦ ( ◡ 𝐶 “ ( 0 [,) 𝑎 ) ) ) ) | |
| 16 | eqid | ⊢ ( ( 𝑌 × 𝑌 ) filGen ran ( 𝑏 ∈ ℝ+ ↦ ( ◡ 𝐷 “ ( 0 [,) 𝑏 ) ) ) ) = ( ( 𝑌 × 𝑌 ) filGen ran ( 𝑏 ∈ ℝ+ ↦ ( ◡ 𝐷 “ ( 0 [,) 𝑏 ) ) ) ) | |
| 17 | oveq2 | ⊢ ( 𝑎 = 𝑐 → ( 0 [,) 𝑎 ) = ( 0 [,) 𝑐 ) ) | |
| 18 | 17 | imaeq2d | ⊢ ( 𝑎 = 𝑐 → ( ◡ 𝐶 “ ( 0 [,) 𝑎 ) ) = ( ◡ 𝐶 “ ( 0 [,) 𝑐 ) ) ) |
| 19 | 18 | cbvmptv | ⊢ ( 𝑎 ∈ ℝ+ ↦ ( ◡ 𝐶 “ ( 0 [,) 𝑎 ) ) ) = ( 𝑐 ∈ ℝ+ ↦ ( ◡ 𝐶 “ ( 0 [,) 𝑐 ) ) ) |
| 20 | 19 | rneqi | ⊢ ran ( 𝑎 ∈ ℝ+ ↦ ( ◡ 𝐶 “ ( 0 [,) 𝑎 ) ) ) = ran ( 𝑐 ∈ ℝ+ ↦ ( ◡ 𝐶 “ ( 0 [,) 𝑐 ) ) ) |
| 21 | 20 | metust | ⊢ ( ( 𝑋 ≠ ∅ ∧ 𝐶 ∈ ( PsMet ‘ 𝑋 ) ) → ( ( 𝑋 × 𝑋 ) filGen ran ( 𝑎 ∈ ℝ+ ↦ ( ◡ 𝐶 “ ( 0 [,) 𝑎 ) ) ) ) ∈ ( UnifOn ‘ 𝑋 ) ) |
| 22 | 3 5 21 | syl2anc | ⊢ ( 𝜑 → ( ( 𝑋 × 𝑋 ) filGen ran ( 𝑎 ∈ ℝ+ ↦ ( ◡ 𝐶 “ ( 0 [,) 𝑎 ) ) ) ) ∈ ( UnifOn ‘ 𝑋 ) ) |
| 23 | oveq2 | ⊢ ( 𝑏 = 𝑑 → ( 0 [,) 𝑏 ) = ( 0 [,) 𝑑 ) ) | |
| 24 | 23 | imaeq2d | ⊢ ( 𝑏 = 𝑑 → ( ◡ 𝐷 “ ( 0 [,) 𝑏 ) ) = ( ◡ 𝐷 “ ( 0 [,) 𝑑 ) ) ) |
| 25 | 24 | cbvmptv | ⊢ ( 𝑏 ∈ ℝ+ ↦ ( ◡ 𝐷 “ ( 0 [,) 𝑏 ) ) ) = ( 𝑑 ∈ ℝ+ ↦ ( ◡ 𝐷 “ ( 0 [,) 𝑑 ) ) ) |
| 26 | 25 | rneqi | ⊢ ran ( 𝑏 ∈ ℝ+ ↦ ( ◡ 𝐷 “ ( 0 [,) 𝑏 ) ) ) = ran ( 𝑑 ∈ ℝ+ ↦ ( ◡ 𝐷 “ ( 0 [,) 𝑑 ) ) ) |
| 27 | 26 | metust | ⊢ ( ( 𝑌 ≠ ∅ ∧ 𝐷 ∈ ( PsMet ‘ 𝑌 ) ) → ( ( 𝑌 × 𝑌 ) filGen ran ( 𝑏 ∈ ℝ+ ↦ ( ◡ 𝐷 “ ( 0 [,) 𝑏 ) ) ) ) ∈ ( UnifOn ‘ 𝑌 ) ) |
| 28 | 4 6 27 | syl2anc | ⊢ ( 𝜑 → ( ( 𝑌 × 𝑌 ) filGen ran ( 𝑏 ∈ ℝ+ ↦ ( ◡ 𝐷 “ ( 0 [,) 𝑏 ) ) ) ) ∈ ( UnifOn ‘ 𝑌 ) ) |
| 29 | oveq2 | ⊢ ( 𝑎 = 𝑒 → ( 0 [,) 𝑎 ) = ( 0 [,) 𝑒 ) ) | |
| 30 | 29 | imaeq2d | ⊢ ( 𝑎 = 𝑒 → ( ◡ 𝐶 “ ( 0 [,) 𝑎 ) ) = ( ◡ 𝐶 “ ( 0 [,) 𝑒 ) ) ) |
| 31 | 30 | cbvmptv | ⊢ ( 𝑎 ∈ ℝ+ ↦ ( ◡ 𝐶 “ ( 0 [,) 𝑎 ) ) ) = ( 𝑒 ∈ ℝ+ ↦ ( ◡ 𝐶 “ ( 0 [,) 𝑒 ) ) ) |
| 32 | 31 | rneqi | ⊢ ran ( 𝑎 ∈ ℝ+ ↦ ( ◡ 𝐶 “ ( 0 [,) 𝑎 ) ) ) = ran ( 𝑒 ∈ ℝ+ ↦ ( ◡ 𝐶 “ ( 0 [,) 𝑒 ) ) ) |
| 33 | 32 | metustfbas | ⊢ ( ( 𝑋 ≠ ∅ ∧ 𝐶 ∈ ( PsMet ‘ 𝑋 ) ) → ran ( 𝑎 ∈ ℝ+ ↦ ( ◡ 𝐶 “ ( 0 [,) 𝑎 ) ) ) ∈ ( fBas ‘ ( 𝑋 × 𝑋 ) ) ) |
| 34 | 3 5 33 | syl2anc | ⊢ ( 𝜑 → ran ( 𝑎 ∈ ℝ+ ↦ ( ◡ 𝐶 “ ( 0 [,) 𝑎 ) ) ) ∈ ( fBas ‘ ( 𝑋 × 𝑋 ) ) ) |
| 35 | oveq2 | ⊢ ( 𝑏 = 𝑓 → ( 0 [,) 𝑏 ) = ( 0 [,) 𝑓 ) ) | |
| 36 | 35 | imaeq2d | ⊢ ( 𝑏 = 𝑓 → ( ◡ 𝐷 “ ( 0 [,) 𝑏 ) ) = ( ◡ 𝐷 “ ( 0 [,) 𝑓 ) ) ) |
| 37 | 36 | cbvmptv | ⊢ ( 𝑏 ∈ ℝ+ ↦ ( ◡ 𝐷 “ ( 0 [,) 𝑏 ) ) ) = ( 𝑓 ∈ ℝ+ ↦ ( ◡ 𝐷 “ ( 0 [,) 𝑓 ) ) ) |
| 38 | 37 | rneqi | ⊢ ran ( 𝑏 ∈ ℝ+ ↦ ( ◡ 𝐷 “ ( 0 [,) 𝑏 ) ) ) = ran ( 𝑓 ∈ ℝ+ ↦ ( ◡ 𝐷 “ ( 0 [,) 𝑓 ) ) ) |
| 39 | 38 | metustfbas | ⊢ ( ( 𝑌 ≠ ∅ ∧ 𝐷 ∈ ( PsMet ‘ 𝑌 ) ) → ran ( 𝑏 ∈ ℝ+ ↦ ( ◡ 𝐷 “ ( 0 [,) 𝑏 ) ) ) ∈ ( fBas ‘ ( 𝑌 × 𝑌 ) ) ) |
| 40 | 4 6 39 | syl2anc | ⊢ ( 𝜑 → ran ( 𝑏 ∈ ℝ+ ↦ ( ◡ 𝐷 “ ( 0 [,) 𝑏 ) ) ) ∈ ( fBas ‘ ( 𝑌 × 𝑌 ) ) ) |
| 41 | 15 16 22 28 34 40 | isucn2 | ⊢ ( 𝜑 → ( 𝐹 ∈ ( ( ( 𝑋 × 𝑋 ) filGen ran ( 𝑎 ∈ ℝ+ ↦ ( ◡ 𝐶 “ ( 0 [,) 𝑎 ) ) ) ) Cnu ( ( 𝑌 × 𝑌 ) filGen ran ( 𝑏 ∈ ℝ+ ↦ ( ◡ 𝐷 “ ( 0 [,) 𝑏 ) ) ) ) ) ↔ ( 𝐹 : 𝑋 ⟶ 𝑌 ∧ ∀ 𝑣 ∈ ran ( 𝑏 ∈ ℝ+ ↦ ( ◡ 𝐷 “ ( 0 [,) 𝑏 ) ) ) ∃ 𝑢 ∈ ran ( 𝑎 ∈ ℝ+ ↦ ( ◡ 𝐶 “ ( 0 [,) 𝑎 ) ) ) ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝑥 𝑢 𝑦 → ( 𝐹 ‘ 𝑥 ) 𝑣 ( 𝐹 ‘ 𝑦 ) ) ) ) ) |
| 42 | 14 41 | bitrd | ⊢ ( 𝜑 → ( 𝐹 ∈ ( 𝑈 Cnu 𝑉 ) ↔ ( 𝐹 : 𝑋 ⟶ 𝑌 ∧ ∀ 𝑣 ∈ ran ( 𝑏 ∈ ℝ+ ↦ ( ◡ 𝐷 “ ( 0 [,) 𝑏 ) ) ) ∃ 𝑢 ∈ ran ( 𝑎 ∈ ℝ+ ↦ ( ◡ 𝐶 “ ( 0 [,) 𝑎 ) ) ) ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝑥 𝑢 𝑦 → ( 𝐹 ‘ 𝑥 ) 𝑣 ( 𝐹 ‘ 𝑦 ) ) ) ) ) |
| 43 | eqid | ⊢ ( ◡ 𝐷 “ ( 0 [,) 𝑑 ) ) = ( ◡ 𝐷 “ ( 0 [,) 𝑑 ) ) | |
| 44 | oveq2 | ⊢ ( 𝑓 = 𝑑 → ( 0 [,) 𝑓 ) = ( 0 [,) 𝑑 ) ) | |
| 45 | 44 | imaeq2d | ⊢ ( 𝑓 = 𝑑 → ( ◡ 𝐷 “ ( 0 [,) 𝑓 ) ) = ( ◡ 𝐷 “ ( 0 [,) 𝑑 ) ) ) |
| 46 | 45 | rspceeqv | ⊢ ( ( 𝑑 ∈ ℝ+ ∧ ( ◡ 𝐷 “ ( 0 [,) 𝑑 ) ) = ( ◡ 𝐷 “ ( 0 [,) 𝑑 ) ) ) → ∃ 𝑓 ∈ ℝ+ ( ◡ 𝐷 “ ( 0 [,) 𝑑 ) ) = ( ◡ 𝐷 “ ( 0 [,) 𝑓 ) ) ) |
| 47 | 43 46 | mpan2 | ⊢ ( 𝑑 ∈ ℝ+ → ∃ 𝑓 ∈ ℝ+ ( ◡ 𝐷 “ ( 0 [,) 𝑑 ) ) = ( ◡ 𝐷 “ ( 0 [,) 𝑓 ) ) ) |
| 48 | 47 | adantl | ⊢ ( ( 𝜑 ∧ 𝑑 ∈ ℝ+ ) → ∃ 𝑓 ∈ ℝ+ ( ◡ 𝐷 “ ( 0 [,) 𝑑 ) ) = ( ◡ 𝐷 “ ( 0 [,) 𝑓 ) ) ) |
| 49 | 38 | metustel | ⊢ ( 𝐷 ∈ ( PsMet ‘ 𝑌 ) → ( ( ◡ 𝐷 “ ( 0 [,) 𝑑 ) ) ∈ ran ( 𝑏 ∈ ℝ+ ↦ ( ◡ 𝐷 “ ( 0 [,) 𝑏 ) ) ) ↔ ∃ 𝑓 ∈ ℝ+ ( ◡ 𝐷 “ ( 0 [,) 𝑑 ) ) = ( ◡ 𝐷 “ ( 0 [,) 𝑓 ) ) ) ) |
| 50 | 6 49 | syl | ⊢ ( 𝜑 → ( ( ◡ 𝐷 “ ( 0 [,) 𝑑 ) ) ∈ ran ( 𝑏 ∈ ℝ+ ↦ ( ◡ 𝐷 “ ( 0 [,) 𝑏 ) ) ) ↔ ∃ 𝑓 ∈ ℝ+ ( ◡ 𝐷 “ ( 0 [,) 𝑑 ) ) = ( ◡ 𝐷 “ ( 0 [,) 𝑓 ) ) ) ) |
| 51 | 50 | adantr | ⊢ ( ( 𝜑 ∧ 𝑑 ∈ ℝ+ ) → ( ( ◡ 𝐷 “ ( 0 [,) 𝑑 ) ) ∈ ran ( 𝑏 ∈ ℝ+ ↦ ( ◡ 𝐷 “ ( 0 [,) 𝑏 ) ) ) ↔ ∃ 𝑓 ∈ ℝ+ ( ◡ 𝐷 “ ( 0 [,) 𝑑 ) ) = ( ◡ 𝐷 “ ( 0 [,) 𝑓 ) ) ) ) |
| 52 | 48 51 | mpbird | ⊢ ( ( 𝜑 ∧ 𝑑 ∈ ℝ+ ) → ( ◡ 𝐷 “ ( 0 [,) 𝑑 ) ) ∈ ran ( 𝑏 ∈ ℝ+ ↦ ( ◡ 𝐷 “ ( 0 [,) 𝑏 ) ) ) ) |
| 53 | 26 | metustel | ⊢ ( 𝐷 ∈ ( PsMet ‘ 𝑌 ) → ( 𝑣 ∈ ran ( 𝑏 ∈ ℝ+ ↦ ( ◡ 𝐷 “ ( 0 [,) 𝑏 ) ) ) ↔ ∃ 𝑑 ∈ ℝ+ 𝑣 = ( ◡ 𝐷 “ ( 0 [,) 𝑑 ) ) ) ) |
| 54 | 6 53 | syl | ⊢ ( 𝜑 → ( 𝑣 ∈ ran ( 𝑏 ∈ ℝ+ ↦ ( ◡ 𝐷 “ ( 0 [,) 𝑏 ) ) ) ↔ ∃ 𝑑 ∈ ℝ+ 𝑣 = ( ◡ 𝐷 “ ( 0 [,) 𝑑 ) ) ) ) |
| 55 | simpr | ⊢ ( ( 𝜑 ∧ 𝑣 = ( ◡ 𝐷 “ ( 0 [,) 𝑑 ) ) ) → 𝑣 = ( ◡ 𝐷 “ ( 0 [,) 𝑑 ) ) ) | |
| 56 | 55 | breqd | ⊢ ( ( 𝜑 ∧ 𝑣 = ( ◡ 𝐷 “ ( 0 [,) 𝑑 ) ) ) → ( ( 𝐹 ‘ 𝑥 ) 𝑣 ( 𝐹 ‘ 𝑦 ) ↔ ( 𝐹 ‘ 𝑥 ) ( ◡ 𝐷 “ ( 0 [,) 𝑑 ) ) ( 𝐹 ‘ 𝑦 ) ) ) |
| 57 | 56 | imbi2d | ⊢ ( ( 𝜑 ∧ 𝑣 = ( ◡ 𝐷 “ ( 0 [,) 𝑑 ) ) ) → ( ( 𝑥 𝑢 𝑦 → ( 𝐹 ‘ 𝑥 ) 𝑣 ( 𝐹 ‘ 𝑦 ) ) ↔ ( 𝑥 𝑢 𝑦 → ( 𝐹 ‘ 𝑥 ) ( ◡ 𝐷 “ ( 0 [,) 𝑑 ) ) ( 𝐹 ‘ 𝑦 ) ) ) ) |
| 58 | 57 | ralbidv | ⊢ ( ( 𝜑 ∧ 𝑣 = ( ◡ 𝐷 “ ( 0 [,) 𝑑 ) ) ) → ( ∀ 𝑦 ∈ 𝑋 ( 𝑥 𝑢 𝑦 → ( 𝐹 ‘ 𝑥 ) 𝑣 ( 𝐹 ‘ 𝑦 ) ) ↔ ∀ 𝑦 ∈ 𝑋 ( 𝑥 𝑢 𝑦 → ( 𝐹 ‘ 𝑥 ) ( ◡ 𝐷 “ ( 0 [,) 𝑑 ) ) ( 𝐹 ‘ 𝑦 ) ) ) ) |
| 59 | 58 | rexralbidv | ⊢ ( ( 𝜑 ∧ 𝑣 = ( ◡ 𝐷 “ ( 0 [,) 𝑑 ) ) ) → ( ∃ 𝑢 ∈ ran ( 𝑎 ∈ ℝ+ ↦ ( ◡ 𝐶 “ ( 0 [,) 𝑎 ) ) ) ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝑥 𝑢 𝑦 → ( 𝐹 ‘ 𝑥 ) 𝑣 ( 𝐹 ‘ 𝑦 ) ) ↔ ∃ 𝑢 ∈ ran ( 𝑎 ∈ ℝ+ ↦ ( ◡ 𝐶 “ ( 0 [,) 𝑎 ) ) ) ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝑥 𝑢 𝑦 → ( 𝐹 ‘ 𝑥 ) ( ◡ 𝐷 “ ( 0 [,) 𝑑 ) ) ( 𝐹 ‘ 𝑦 ) ) ) ) |
| 60 | 52 54 59 | ralxfr2d | ⊢ ( 𝜑 → ( ∀ 𝑣 ∈ ran ( 𝑏 ∈ ℝ+ ↦ ( ◡ 𝐷 “ ( 0 [,) 𝑏 ) ) ) ∃ 𝑢 ∈ ran ( 𝑎 ∈ ℝ+ ↦ ( ◡ 𝐶 “ ( 0 [,) 𝑎 ) ) ) ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝑥 𝑢 𝑦 → ( 𝐹 ‘ 𝑥 ) 𝑣 ( 𝐹 ‘ 𝑦 ) ) ↔ ∀ 𝑑 ∈ ℝ+ ∃ 𝑢 ∈ ran ( 𝑎 ∈ ℝ+ ↦ ( ◡ 𝐶 “ ( 0 [,) 𝑎 ) ) ) ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝑥 𝑢 𝑦 → ( 𝐹 ‘ 𝑥 ) ( ◡ 𝐷 “ ( 0 [,) 𝑑 ) ) ( 𝐹 ‘ 𝑦 ) ) ) ) |
| 61 | eqid | ⊢ ( ◡ 𝐶 “ ( 0 [,) 𝑐 ) ) = ( ◡ 𝐶 “ ( 0 [,) 𝑐 ) ) | |
| 62 | oveq2 | ⊢ ( 𝑒 = 𝑐 → ( 0 [,) 𝑒 ) = ( 0 [,) 𝑐 ) ) | |
| 63 | 62 | imaeq2d | ⊢ ( 𝑒 = 𝑐 → ( ◡ 𝐶 “ ( 0 [,) 𝑒 ) ) = ( ◡ 𝐶 “ ( 0 [,) 𝑐 ) ) ) |
| 64 | 63 | rspceeqv | ⊢ ( ( 𝑐 ∈ ℝ+ ∧ ( ◡ 𝐶 “ ( 0 [,) 𝑐 ) ) = ( ◡ 𝐶 “ ( 0 [,) 𝑐 ) ) ) → ∃ 𝑒 ∈ ℝ+ ( ◡ 𝐶 “ ( 0 [,) 𝑐 ) ) = ( ◡ 𝐶 “ ( 0 [,) 𝑒 ) ) ) |
| 65 | 61 64 | mpan2 | ⊢ ( 𝑐 ∈ ℝ+ → ∃ 𝑒 ∈ ℝ+ ( ◡ 𝐶 “ ( 0 [,) 𝑐 ) ) = ( ◡ 𝐶 “ ( 0 [,) 𝑒 ) ) ) |
| 66 | 65 | adantl | ⊢ ( ( 𝜑 ∧ 𝑐 ∈ ℝ+ ) → ∃ 𝑒 ∈ ℝ+ ( ◡ 𝐶 “ ( 0 [,) 𝑐 ) ) = ( ◡ 𝐶 “ ( 0 [,) 𝑒 ) ) ) |
| 67 | 32 | metustel | ⊢ ( 𝐶 ∈ ( PsMet ‘ 𝑋 ) → ( ( ◡ 𝐶 “ ( 0 [,) 𝑐 ) ) ∈ ran ( 𝑎 ∈ ℝ+ ↦ ( ◡ 𝐶 “ ( 0 [,) 𝑎 ) ) ) ↔ ∃ 𝑒 ∈ ℝ+ ( ◡ 𝐶 “ ( 0 [,) 𝑐 ) ) = ( ◡ 𝐶 “ ( 0 [,) 𝑒 ) ) ) ) |
| 68 | 5 67 | syl | ⊢ ( 𝜑 → ( ( ◡ 𝐶 “ ( 0 [,) 𝑐 ) ) ∈ ran ( 𝑎 ∈ ℝ+ ↦ ( ◡ 𝐶 “ ( 0 [,) 𝑎 ) ) ) ↔ ∃ 𝑒 ∈ ℝ+ ( ◡ 𝐶 “ ( 0 [,) 𝑐 ) ) = ( ◡ 𝐶 “ ( 0 [,) 𝑒 ) ) ) ) |
| 69 | 68 | adantr | ⊢ ( ( 𝜑 ∧ 𝑐 ∈ ℝ+ ) → ( ( ◡ 𝐶 “ ( 0 [,) 𝑐 ) ) ∈ ran ( 𝑎 ∈ ℝ+ ↦ ( ◡ 𝐶 “ ( 0 [,) 𝑎 ) ) ) ↔ ∃ 𝑒 ∈ ℝ+ ( ◡ 𝐶 “ ( 0 [,) 𝑐 ) ) = ( ◡ 𝐶 “ ( 0 [,) 𝑒 ) ) ) ) |
| 70 | 66 69 | mpbird | ⊢ ( ( 𝜑 ∧ 𝑐 ∈ ℝ+ ) → ( ◡ 𝐶 “ ( 0 [,) 𝑐 ) ) ∈ ran ( 𝑎 ∈ ℝ+ ↦ ( ◡ 𝐶 “ ( 0 [,) 𝑎 ) ) ) ) |
| 71 | 20 | metustel | ⊢ ( 𝐶 ∈ ( PsMet ‘ 𝑋 ) → ( 𝑢 ∈ ran ( 𝑎 ∈ ℝ+ ↦ ( ◡ 𝐶 “ ( 0 [,) 𝑎 ) ) ) ↔ ∃ 𝑐 ∈ ℝ+ 𝑢 = ( ◡ 𝐶 “ ( 0 [,) 𝑐 ) ) ) ) |
| 72 | 5 71 | syl | ⊢ ( 𝜑 → ( 𝑢 ∈ ran ( 𝑎 ∈ ℝ+ ↦ ( ◡ 𝐶 “ ( 0 [,) 𝑎 ) ) ) ↔ ∃ 𝑐 ∈ ℝ+ 𝑢 = ( ◡ 𝐶 “ ( 0 [,) 𝑐 ) ) ) ) |
| 73 | simpr | ⊢ ( ( 𝜑 ∧ 𝑢 = ( ◡ 𝐶 “ ( 0 [,) 𝑐 ) ) ) → 𝑢 = ( ◡ 𝐶 “ ( 0 [,) 𝑐 ) ) ) | |
| 74 | 73 | breqd | ⊢ ( ( 𝜑 ∧ 𝑢 = ( ◡ 𝐶 “ ( 0 [,) 𝑐 ) ) ) → ( 𝑥 𝑢 𝑦 ↔ 𝑥 ( ◡ 𝐶 “ ( 0 [,) 𝑐 ) ) 𝑦 ) ) |
| 75 | 74 | imbi1d | ⊢ ( ( 𝜑 ∧ 𝑢 = ( ◡ 𝐶 “ ( 0 [,) 𝑐 ) ) ) → ( ( 𝑥 𝑢 𝑦 → ( 𝐹 ‘ 𝑥 ) ( ◡ 𝐷 “ ( 0 [,) 𝑑 ) ) ( 𝐹 ‘ 𝑦 ) ) ↔ ( 𝑥 ( ◡ 𝐶 “ ( 0 [,) 𝑐 ) ) 𝑦 → ( 𝐹 ‘ 𝑥 ) ( ◡ 𝐷 “ ( 0 [,) 𝑑 ) ) ( 𝐹 ‘ 𝑦 ) ) ) ) |
| 76 | 75 | 2ralbidv | ⊢ ( ( 𝜑 ∧ 𝑢 = ( ◡ 𝐶 “ ( 0 [,) 𝑐 ) ) ) → ( ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝑥 𝑢 𝑦 → ( 𝐹 ‘ 𝑥 ) ( ◡ 𝐷 “ ( 0 [,) 𝑑 ) ) ( 𝐹 ‘ 𝑦 ) ) ↔ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝑥 ( ◡ 𝐶 “ ( 0 [,) 𝑐 ) ) 𝑦 → ( 𝐹 ‘ 𝑥 ) ( ◡ 𝐷 “ ( 0 [,) 𝑑 ) ) ( 𝐹 ‘ 𝑦 ) ) ) ) |
| 77 | 70 72 76 | rexxfr2d | ⊢ ( 𝜑 → ( ∃ 𝑢 ∈ ran ( 𝑎 ∈ ℝ+ ↦ ( ◡ 𝐶 “ ( 0 [,) 𝑎 ) ) ) ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝑥 𝑢 𝑦 → ( 𝐹 ‘ 𝑥 ) ( ◡ 𝐷 “ ( 0 [,) 𝑑 ) ) ( 𝐹 ‘ 𝑦 ) ) ↔ ∃ 𝑐 ∈ ℝ+ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝑥 ( ◡ 𝐶 “ ( 0 [,) 𝑐 ) ) 𝑦 → ( 𝐹 ‘ 𝑥 ) ( ◡ 𝐷 “ ( 0 [,) 𝑑 ) ) ( 𝐹 ‘ 𝑦 ) ) ) ) |
| 78 | 77 | ralbidv | ⊢ ( 𝜑 → ( ∀ 𝑑 ∈ ℝ+ ∃ 𝑢 ∈ ran ( 𝑎 ∈ ℝ+ ↦ ( ◡ 𝐶 “ ( 0 [,) 𝑎 ) ) ) ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝑥 𝑢 𝑦 → ( 𝐹 ‘ 𝑥 ) ( ◡ 𝐷 “ ( 0 [,) 𝑑 ) ) ( 𝐹 ‘ 𝑦 ) ) ↔ ∀ 𝑑 ∈ ℝ+ ∃ 𝑐 ∈ ℝ+ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝑥 ( ◡ 𝐶 “ ( 0 [,) 𝑐 ) ) 𝑦 → ( 𝐹 ‘ 𝑥 ) ( ◡ 𝐷 “ ( 0 [,) 𝑑 ) ) ( 𝐹 ‘ 𝑦 ) ) ) ) |
| 79 | 60 78 | bitrd | ⊢ ( 𝜑 → ( ∀ 𝑣 ∈ ran ( 𝑏 ∈ ℝ+ ↦ ( ◡ 𝐷 “ ( 0 [,) 𝑏 ) ) ) ∃ 𝑢 ∈ ran ( 𝑎 ∈ ℝ+ ↦ ( ◡ 𝐶 “ ( 0 [,) 𝑎 ) ) ) ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝑥 𝑢 𝑦 → ( 𝐹 ‘ 𝑥 ) 𝑣 ( 𝐹 ‘ 𝑦 ) ) ↔ ∀ 𝑑 ∈ ℝ+ ∃ 𝑐 ∈ ℝ+ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝑥 ( ◡ 𝐶 “ ( 0 [,) 𝑐 ) ) 𝑦 → ( 𝐹 ‘ 𝑥 ) ( ◡ 𝐷 “ ( 0 [,) 𝑑 ) ) ( 𝐹 ‘ 𝑦 ) ) ) ) |
| 80 | 79 | adantr | ⊢ ( ( 𝜑 ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) → ( ∀ 𝑣 ∈ ran ( 𝑏 ∈ ℝ+ ↦ ( ◡ 𝐷 “ ( 0 [,) 𝑏 ) ) ) ∃ 𝑢 ∈ ran ( 𝑎 ∈ ℝ+ ↦ ( ◡ 𝐶 “ ( 0 [,) 𝑎 ) ) ) ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝑥 𝑢 𝑦 → ( 𝐹 ‘ 𝑥 ) 𝑣 ( 𝐹 ‘ 𝑦 ) ) ↔ ∀ 𝑑 ∈ ℝ+ ∃ 𝑐 ∈ ℝ+ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝑥 ( ◡ 𝐶 “ ( 0 [,) 𝑐 ) ) 𝑦 → ( 𝐹 ‘ 𝑥 ) ( ◡ 𝐷 “ ( 0 [,) 𝑑 ) ) ( 𝐹 ‘ 𝑦 ) ) ) ) |
| 81 | 5 | ad4antr | ⊢ ( ( ( ( ( 𝜑 ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) ∧ 𝑑 ∈ ℝ+ ) ∧ 𝑐 ∈ ℝ+ ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) → 𝐶 ∈ ( PsMet ‘ 𝑋 ) ) |
| 82 | simplr | ⊢ ( ( ( ( ( 𝜑 ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) ∧ 𝑑 ∈ ℝ+ ) ∧ 𝑐 ∈ ℝ+ ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) → 𝑐 ∈ ℝ+ ) | |
| 83 | simprr | ⊢ ( ( ( ( ( 𝜑 ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) ∧ 𝑑 ∈ ℝ+ ) ∧ 𝑐 ∈ ℝ+ ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) → 𝑦 ∈ 𝑋 ) | |
| 84 | simprl | ⊢ ( ( ( ( ( 𝜑 ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) ∧ 𝑑 ∈ ℝ+ ) ∧ 𝑐 ∈ ℝ+ ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) → 𝑥 ∈ 𝑋 ) | |
| 85 | elbl4 | ⊢ ( ( ( 𝐶 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝑐 ∈ ℝ+ ) ∧ ( 𝑦 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋 ) ) → ( 𝑥 ∈ ( 𝑦 ( ball ‘ 𝐶 ) 𝑐 ) ↔ 𝑥 ( ◡ 𝐶 “ ( 0 [,) 𝑐 ) ) 𝑦 ) ) | |
| 86 | rpxr | ⊢ ( 𝑐 ∈ ℝ+ → 𝑐 ∈ ℝ* ) | |
| 87 | elbl3ps | ⊢ ( ( ( 𝐶 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝑐 ∈ ℝ* ) ∧ ( 𝑦 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋 ) ) → ( 𝑥 ∈ ( 𝑦 ( ball ‘ 𝐶 ) 𝑐 ) ↔ ( 𝑥 𝐶 𝑦 ) < 𝑐 ) ) | |
| 88 | 86 87 | sylanl2 | ⊢ ( ( ( 𝐶 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝑐 ∈ ℝ+ ) ∧ ( 𝑦 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋 ) ) → ( 𝑥 ∈ ( 𝑦 ( ball ‘ 𝐶 ) 𝑐 ) ↔ ( 𝑥 𝐶 𝑦 ) < 𝑐 ) ) |
| 89 | 85 88 | bitr3d | ⊢ ( ( ( 𝐶 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝑐 ∈ ℝ+ ) ∧ ( 𝑦 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋 ) ) → ( 𝑥 ( ◡ 𝐶 “ ( 0 [,) 𝑐 ) ) 𝑦 ↔ ( 𝑥 𝐶 𝑦 ) < 𝑐 ) ) |
| 90 | 81 82 83 84 89 | syl22anc | ⊢ ( ( ( ( ( 𝜑 ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) ∧ 𝑑 ∈ ℝ+ ) ∧ 𝑐 ∈ ℝ+ ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) → ( 𝑥 ( ◡ 𝐶 “ ( 0 [,) 𝑐 ) ) 𝑦 ↔ ( 𝑥 𝐶 𝑦 ) < 𝑐 ) ) |
| 91 | 6 | ad4antr | ⊢ ( ( ( ( ( 𝜑 ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) ∧ 𝑑 ∈ ℝ+ ) ∧ 𝑐 ∈ ℝ+ ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) → 𝐷 ∈ ( PsMet ‘ 𝑌 ) ) |
| 92 | simpllr | ⊢ ( ( ( ( ( 𝜑 ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) ∧ 𝑑 ∈ ℝ+ ) ∧ 𝑐 ∈ ℝ+ ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) → 𝑑 ∈ ℝ+ ) | |
| 93 | simp-4r | ⊢ ( ( ( ( ( 𝜑 ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) ∧ 𝑑 ∈ ℝ+ ) ∧ 𝑐 ∈ ℝ+ ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) → 𝐹 : 𝑋 ⟶ 𝑌 ) | |
| 94 | 93 83 | ffvelcdmd | ⊢ ( ( ( ( ( 𝜑 ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) ∧ 𝑑 ∈ ℝ+ ) ∧ 𝑐 ∈ ℝ+ ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) → ( 𝐹 ‘ 𝑦 ) ∈ 𝑌 ) |
| 95 | 93 84 | ffvelcdmd | ⊢ ( ( ( ( ( 𝜑 ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) ∧ 𝑑 ∈ ℝ+ ) ∧ 𝑐 ∈ ℝ+ ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) → ( 𝐹 ‘ 𝑥 ) ∈ 𝑌 ) |
| 96 | elbl4 | ⊢ ( ( ( 𝐷 ∈ ( PsMet ‘ 𝑌 ) ∧ 𝑑 ∈ ℝ+ ) ∧ ( ( 𝐹 ‘ 𝑦 ) ∈ 𝑌 ∧ ( 𝐹 ‘ 𝑥 ) ∈ 𝑌 ) ) → ( ( 𝐹 ‘ 𝑥 ) ∈ ( ( 𝐹 ‘ 𝑦 ) ( ball ‘ 𝐷 ) 𝑑 ) ↔ ( 𝐹 ‘ 𝑥 ) ( ◡ 𝐷 “ ( 0 [,) 𝑑 ) ) ( 𝐹 ‘ 𝑦 ) ) ) | |
| 97 | rpxr | ⊢ ( 𝑑 ∈ ℝ+ → 𝑑 ∈ ℝ* ) | |
| 98 | elbl3ps | ⊢ ( ( ( 𝐷 ∈ ( PsMet ‘ 𝑌 ) ∧ 𝑑 ∈ ℝ* ) ∧ ( ( 𝐹 ‘ 𝑦 ) ∈ 𝑌 ∧ ( 𝐹 ‘ 𝑥 ) ∈ 𝑌 ) ) → ( ( 𝐹 ‘ 𝑥 ) ∈ ( ( 𝐹 ‘ 𝑦 ) ( ball ‘ 𝐷 ) 𝑑 ) ↔ ( ( 𝐹 ‘ 𝑥 ) 𝐷 ( 𝐹 ‘ 𝑦 ) ) < 𝑑 ) ) | |
| 99 | 97 98 | sylanl2 | ⊢ ( ( ( 𝐷 ∈ ( PsMet ‘ 𝑌 ) ∧ 𝑑 ∈ ℝ+ ) ∧ ( ( 𝐹 ‘ 𝑦 ) ∈ 𝑌 ∧ ( 𝐹 ‘ 𝑥 ) ∈ 𝑌 ) ) → ( ( 𝐹 ‘ 𝑥 ) ∈ ( ( 𝐹 ‘ 𝑦 ) ( ball ‘ 𝐷 ) 𝑑 ) ↔ ( ( 𝐹 ‘ 𝑥 ) 𝐷 ( 𝐹 ‘ 𝑦 ) ) < 𝑑 ) ) |
| 100 | 96 99 | bitr3d | ⊢ ( ( ( 𝐷 ∈ ( PsMet ‘ 𝑌 ) ∧ 𝑑 ∈ ℝ+ ) ∧ ( ( 𝐹 ‘ 𝑦 ) ∈ 𝑌 ∧ ( 𝐹 ‘ 𝑥 ) ∈ 𝑌 ) ) → ( ( 𝐹 ‘ 𝑥 ) ( ◡ 𝐷 “ ( 0 [,) 𝑑 ) ) ( 𝐹 ‘ 𝑦 ) ↔ ( ( 𝐹 ‘ 𝑥 ) 𝐷 ( 𝐹 ‘ 𝑦 ) ) < 𝑑 ) ) |
| 101 | 91 92 94 95 100 | syl22anc | ⊢ ( ( ( ( ( 𝜑 ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) ∧ 𝑑 ∈ ℝ+ ) ∧ 𝑐 ∈ ℝ+ ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) → ( ( 𝐹 ‘ 𝑥 ) ( ◡ 𝐷 “ ( 0 [,) 𝑑 ) ) ( 𝐹 ‘ 𝑦 ) ↔ ( ( 𝐹 ‘ 𝑥 ) 𝐷 ( 𝐹 ‘ 𝑦 ) ) < 𝑑 ) ) |
| 102 | 90 101 | imbi12d | ⊢ ( ( ( ( ( 𝜑 ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) ∧ 𝑑 ∈ ℝ+ ) ∧ 𝑐 ∈ ℝ+ ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) → ( ( 𝑥 ( ◡ 𝐶 “ ( 0 [,) 𝑐 ) ) 𝑦 → ( 𝐹 ‘ 𝑥 ) ( ◡ 𝐷 “ ( 0 [,) 𝑑 ) ) ( 𝐹 ‘ 𝑦 ) ) ↔ ( ( 𝑥 𝐶 𝑦 ) < 𝑐 → ( ( 𝐹 ‘ 𝑥 ) 𝐷 ( 𝐹 ‘ 𝑦 ) ) < 𝑑 ) ) ) |
| 103 | 102 | 2ralbidva | ⊢ ( ( ( ( 𝜑 ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) ∧ 𝑑 ∈ ℝ+ ) ∧ 𝑐 ∈ ℝ+ ) → ( ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝑥 ( ◡ 𝐶 “ ( 0 [,) 𝑐 ) ) 𝑦 → ( 𝐹 ‘ 𝑥 ) ( ◡ 𝐷 “ ( 0 [,) 𝑑 ) ) ( 𝐹 ‘ 𝑦 ) ) ↔ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( ( 𝑥 𝐶 𝑦 ) < 𝑐 → ( ( 𝐹 ‘ 𝑥 ) 𝐷 ( 𝐹 ‘ 𝑦 ) ) < 𝑑 ) ) ) |
| 104 | 103 | rexbidva | ⊢ ( ( ( 𝜑 ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) ∧ 𝑑 ∈ ℝ+ ) → ( ∃ 𝑐 ∈ ℝ+ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝑥 ( ◡ 𝐶 “ ( 0 [,) 𝑐 ) ) 𝑦 → ( 𝐹 ‘ 𝑥 ) ( ◡ 𝐷 “ ( 0 [,) 𝑑 ) ) ( 𝐹 ‘ 𝑦 ) ) ↔ ∃ 𝑐 ∈ ℝ+ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( ( 𝑥 𝐶 𝑦 ) < 𝑐 → ( ( 𝐹 ‘ 𝑥 ) 𝐷 ( 𝐹 ‘ 𝑦 ) ) < 𝑑 ) ) ) |
| 105 | 104 | ralbidva | ⊢ ( ( 𝜑 ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) → ( ∀ 𝑑 ∈ ℝ+ ∃ 𝑐 ∈ ℝ+ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝑥 ( ◡ 𝐶 “ ( 0 [,) 𝑐 ) ) 𝑦 → ( 𝐹 ‘ 𝑥 ) ( ◡ 𝐷 “ ( 0 [,) 𝑑 ) ) ( 𝐹 ‘ 𝑦 ) ) ↔ ∀ 𝑑 ∈ ℝ+ ∃ 𝑐 ∈ ℝ+ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( ( 𝑥 𝐶 𝑦 ) < 𝑐 → ( ( 𝐹 ‘ 𝑥 ) 𝐷 ( 𝐹 ‘ 𝑦 ) ) < 𝑑 ) ) ) |
| 106 | 80 105 | bitrd | ⊢ ( ( 𝜑 ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) → ( ∀ 𝑣 ∈ ran ( 𝑏 ∈ ℝ+ ↦ ( ◡ 𝐷 “ ( 0 [,) 𝑏 ) ) ) ∃ 𝑢 ∈ ran ( 𝑎 ∈ ℝ+ ↦ ( ◡ 𝐶 “ ( 0 [,) 𝑎 ) ) ) ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝑥 𝑢 𝑦 → ( 𝐹 ‘ 𝑥 ) 𝑣 ( 𝐹 ‘ 𝑦 ) ) ↔ ∀ 𝑑 ∈ ℝ+ ∃ 𝑐 ∈ ℝ+ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( ( 𝑥 𝐶 𝑦 ) < 𝑐 → ( ( 𝐹 ‘ 𝑥 ) 𝐷 ( 𝐹 ‘ 𝑦 ) ) < 𝑑 ) ) ) |
| 107 | 106 | pm5.32da | ⊢ ( 𝜑 → ( ( 𝐹 : 𝑋 ⟶ 𝑌 ∧ ∀ 𝑣 ∈ ran ( 𝑏 ∈ ℝ+ ↦ ( ◡ 𝐷 “ ( 0 [,) 𝑏 ) ) ) ∃ 𝑢 ∈ ran ( 𝑎 ∈ ℝ+ ↦ ( ◡ 𝐶 “ ( 0 [,) 𝑎 ) ) ) ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝑥 𝑢 𝑦 → ( 𝐹 ‘ 𝑥 ) 𝑣 ( 𝐹 ‘ 𝑦 ) ) ) ↔ ( 𝐹 : 𝑋 ⟶ 𝑌 ∧ ∀ 𝑑 ∈ ℝ+ ∃ 𝑐 ∈ ℝ+ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( ( 𝑥 𝐶 𝑦 ) < 𝑐 → ( ( 𝐹 ‘ 𝑥 ) 𝐷 ( 𝐹 ‘ 𝑦 ) ) < 𝑑 ) ) ) ) |
| 108 | 42 107 | bitrd | ⊢ ( 𝜑 → ( 𝐹 ∈ ( 𝑈 Cnu 𝑉 ) ↔ ( 𝐹 : 𝑋 ⟶ 𝑌 ∧ ∀ 𝑑 ∈ ℝ+ ∃ 𝑐 ∈ ℝ+ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( ( 𝑥 𝐶 𝑦 ) < 𝑐 → ( ( 𝐹 ‘ 𝑥 ) 𝐷 ( 𝐹 ‘ 𝑦 ) ) < 𝑑 ) ) ) ) |