This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Elementhood in the uniform structure generated by a metric D (Contributed by Thierry Arnoux, 8-Dec-2017) (Revised by Thierry Arnoux, 11-Feb-2018)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | metuel | ⊢ ( ( 𝑋 ≠ ∅ ∧ 𝐷 ∈ ( PsMet ‘ 𝑋 ) ) → ( 𝑉 ∈ ( metUnif ‘ 𝐷 ) ↔ ( 𝑉 ⊆ ( 𝑋 × 𝑋 ) ∧ ∃ 𝑤 ∈ ran ( 𝑎 ∈ ℝ+ ↦ ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) ) 𝑤 ⊆ 𝑉 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | metuval | ⊢ ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) → ( metUnif ‘ 𝐷 ) = ( ( 𝑋 × 𝑋 ) filGen ran ( 𝑎 ∈ ℝ+ ↦ ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) ) ) ) | |
| 2 | 1 | adantl | ⊢ ( ( 𝑋 ≠ ∅ ∧ 𝐷 ∈ ( PsMet ‘ 𝑋 ) ) → ( metUnif ‘ 𝐷 ) = ( ( 𝑋 × 𝑋 ) filGen ran ( 𝑎 ∈ ℝ+ ↦ ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) ) ) ) |
| 3 | 2 | eleq2d | ⊢ ( ( 𝑋 ≠ ∅ ∧ 𝐷 ∈ ( PsMet ‘ 𝑋 ) ) → ( 𝑉 ∈ ( metUnif ‘ 𝐷 ) ↔ 𝑉 ∈ ( ( 𝑋 × 𝑋 ) filGen ran ( 𝑎 ∈ ℝ+ ↦ ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) ) ) ) ) |
| 4 | oveq2 | ⊢ ( 𝑎 = 𝑒 → ( 0 [,) 𝑎 ) = ( 0 [,) 𝑒 ) ) | |
| 5 | 4 | imaeq2d | ⊢ ( 𝑎 = 𝑒 → ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) = ( ◡ 𝐷 “ ( 0 [,) 𝑒 ) ) ) |
| 6 | 5 | cbvmptv | ⊢ ( 𝑎 ∈ ℝ+ ↦ ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) ) = ( 𝑒 ∈ ℝ+ ↦ ( ◡ 𝐷 “ ( 0 [,) 𝑒 ) ) ) |
| 7 | 6 | rneqi | ⊢ ran ( 𝑎 ∈ ℝ+ ↦ ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) ) = ran ( 𝑒 ∈ ℝ+ ↦ ( ◡ 𝐷 “ ( 0 [,) 𝑒 ) ) ) |
| 8 | 7 | metustfbas | ⊢ ( ( 𝑋 ≠ ∅ ∧ 𝐷 ∈ ( PsMet ‘ 𝑋 ) ) → ran ( 𝑎 ∈ ℝ+ ↦ ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) ) ∈ ( fBas ‘ ( 𝑋 × 𝑋 ) ) ) |
| 9 | elfg | ⊢ ( ran ( 𝑎 ∈ ℝ+ ↦ ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) ) ∈ ( fBas ‘ ( 𝑋 × 𝑋 ) ) → ( 𝑉 ∈ ( ( 𝑋 × 𝑋 ) filGen ran ( 𝑎 ∈ ℝ+ ↦ ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) ) ) ↔ ( 𝑉 ⊆ ( 𝑋 × 𝑋 ) ∧ ∃ 𝑤 ∈ ran ( 𝑎 ∈ ℝ+ ↦ ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) ) 𝑤 ⊆ 𝑉 ) ) ) | |
| 10 | 8 9 | syl | ⊢ ( ( 𝑋 ≠ ∅ ∧ 𝐷 ∈ ( PsMet ‘ 𝑋 ) ) → ( 𝑉 ∈ ( ( 𝑋 × 𝑋 ) filGen ran ( 𝑎 ∈ ℝ+ ↦ ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) ) ) ↔ ( 𝑉 ⊆ ( 𝑋 × 𝑋 ) ∧ ∃ 𝑤 ∈ ran ( 𝑎 ∈ ℝ+ ↦ ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) ) 𝑤 ⊆ 𝑉 ) ) ) |
| 11 | 3 10 | bitrd | ⊢ ( ( 𝑋 ≠ ∅ ∧ 𝐷 ∈ ( PsMet ‘ 𝑋 ) ) → ( 𝑉 ∈ ( metUnif ‘ 𝐷 ) ↔ ( 𝑉 ⊆ ( 𝑋 × 𝑋 ) ∧ ∃ 𝑤 ∈ ran ( 𝑎 ∈ ℝ+ ↦ ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) ) 𝑤 ⊆ 𝑉 ) ) ) |