This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The uniform structure generated by the restriction of a metric is its trace. (Contributed by Thierry Arnoux, 18-Dec-2017)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | restmetu | |- ( ( A =/= (/) /\ D e. ( PsMet ` X ) /\ A C_ X ) -> ( ( metUnif ` D ) |`t ( A X. A ) ) = ( metUnif ` ( D |` ( A X. A ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp1 | |- ( ( A =/= (/) /\ D e. ( PsMet ` X ) /\ A C_ X ) -> A =/= (/) ) |
|
| 2 | psmetres2 | |- ( ( D e. ( PsMet ` X ) /\ A C_ X ) -> ( D |` ( A X. A ) ) e. ( PsMet ` A ) ) |
|
| 3 | 2 | 3adant1 | |- ( ( A =/= (/) /\ D e. ( PsMet ` X ) /\ A C_ X ) -> ( D |` ( A X. A ) ) e. ( PsMet ` A ) ) |
| 4 | oveq2 | |- ( a = b -> ( 0 [,) a ) = ( 0 [,) b ) ) |
|
| 5 | 4 | imaeq2d | |- ( a = b -> ( `' ( D |` ( A X. A ) ) " ( 0 [,) a ) ) = ( `' ( D |` ( A X. A ) ) " ( 0 [,) b ) ) ) |
| 6 | 5 | cbvmptv | |- ( a e. RR+ |-> ( `' ( D |` ( A X. A ) ) " ( 0 [,) a ) ) ) = ( b e. RR+ |-> ( `' ( D |` ( A X. A ) ) " ( 0 [,) b ) ) ) |
| 7 | 6 | rneqi | |- ran ( a e. RR+ |-> ( `' ( D |` ( A X. A ) ) " ( 0 [,) a ) ) ) = ran ( b e. RR+ |-> ( `' ( D |` ( A X. A ) ) " ( 0 [,) b ) ) ) |
| 8 | 7 | metustfbas | |- ( ( A =/= (/) /\ ( D |` ( A X. A ) ) e. ( PsMet ` A ) ) -> ran ( a e. RR+ |-> ( `' ( D |` ( A X. A ) ) " ( 0 [,) a ) ) ) e. ( fBas ` ( A X. A ) ) ) |
| 9 | 1 3 8 | syl2anc | |- ( ( A =/= (/) /\ D e. ( PsMet ` X ) /\ A C_ X ) -> ran ( a e. RR+ |-> ( `' ( D |` ( A X. A ) ) " ( 0 [,) a ) ) ) e. ( fBas ` ( A X. A ) ) ) |
| 10 | fgval | |- ( ran ( a e. RR+ |-> ( `' ( D |` ( A X. A ) ) " ( 0 [,) a ) ) ) e. ( fBas ` ( A X. A ) ) -> ( ( A X. A ) filGen ran ( a e. RR+ |-> ( `' ( D |` ( A X. A ) ) " ( 0 [,) a ) ) ) ) = { v e. ~P ( A X. A ) | ( ran ( a e. RR+ |-> ( `' ( D |` ( A X. A ) ) " ( 0 [,) a ) ) ) i^i ~P v ) =/= (/) } ) |
|
| 11 | 9 10 | syl | |- ( ( A =/= (/) /\ D e. ( PsMet ` X ) /\ A C_ X ) -> ( ( A X. A ) filGen ran ( a e. RR+ |-> ( `' ( D |` ( A X. A ) ) " ( 0 [,) a ) ) ) ) = { v e. ~P ( A X. A ) | ( ran ( a e. RR+ |-> ( `' ( D |` ( A X. A ) ) " ( 0 [,) a ) ) ) i^i ~P v ) =/= (/) } ) |
| 12 | metuval | |- ( ( D |` ( A X. A ) ) e. ( PsMet ` A ) -> ( metUnif ` ( D |` ( A X. A ) ) ) = ( ( A X. A ) filGen ran ( a e. RR+ |-> ( `' ( D |` ( A X. A ) ) " ( 0 [,) a ) ) ) ) ) |
|
| 13 | 3 12 | syl | |- ( ( A =/= (/) /\ D e. ( PsMet ` X ) /\ A C_ X ) -> ( metUnif ` ( D |` ( A X. A ) ) ) = ( ( A X. A ) filGen ran ( a e. RR+ |-> ( `' ( D |` ( A X. A ) ) " ( 0 [,) a ) ) ) ) ) |
| 14 | fvex | |- ( metUnif ` D ) e. _V |
|
| 15 | 3 | elfvexd | |- ( ( A =/= (/) /\ D e. ( PsMet ` X ) /\ A C_ X ) -> A e. _V ) |
| 16 | 15 15 | xpexd | |- ( ( A =/= (/) /\ D e. ( PsMet ` X ) /\ A C_ X ) -> ( A X. A ) e. _V ) |
| 17 | restval | |- ( ( ( metUnif ` D ) e. _V /\ ( A X. A ) e. _V ) -> ( ( metUnif ` D ) |`t ( A X. A ) ) = ran ( v e. ( metUnif ` D ) |-> ( v i^i ( A X. A ) ) ) ) |
|
| 18 | 14 16 17 | sylancr | |- ( ( A =/= (/) /\ D e. ( PsMet ` X ) /\ A C_ X ) -> ( ( metUnif ` D ) |`t ( A X. A ) ) = ran ( v e. ( metUnif ` D ) |-> ( v i^i ( A X. A ) ) ) ) |
| 19 | inss2 | |- ( v i^i ( A X. A ) ) C_ ( A X. A ) |
|
| 20 | sseq1 | |- ( u = ( v i^i ( A X. A ) ) -> ( u C_ ( A X. A ) <-> ( v i^i ( A X. A ) ) C_ ( A X. A ) ) ) |
|
| 21 | 19 20 | mpbiri | |- ( u = ( v i^i ( A X. A ) ) -> u C_ ( A X. A ) ) |
| 22 | vex | |- u e. _V |
|
| 23 | 22 | elpw | |- ( u e. ~P ( A X. A ) <-> u C_ ( A X. A ) ) |
| 24 | 21 23 | sylibr | |- ( u = ( v i^i ( A X. A ) ) -> u e. ~P ( A X. A ) ) |
| 25 | 24 | rexlimivw | |- ( E. v e. ( metUnif ` D ) u = ( v i^i ( A X. A ) ) -> u e. ~P ( A X. A ) ) |
| 26 | 25 | adantl | |- ( ( ( A =/= (/) /\ D e. ( PsMet ` X ) /\ A C_ X ) /\ E. v e. ( metUnif ` D ) u = ( v i^i ( A X. A ) ) ) -> u e. ~P ( A X. A ) ) |
| 27 | nfv | |- F/ a ( ( ( A =/= (/) /\ D e. ( PsMet ` X ) /\ A C_ X ) /\ v e. ( metUnif ` D ) ) /\ u = ( v i^i ( A X. A ) ) ) |
|
| 28 | nfmpt1 | |- F/_ a ( a e. RR+ |-> ( `' D " ( 0 [,) a ) ) ) |
|
| 29 | 28 | nfrn | |- F/_ a ran ( a e. RR+ |-> ( `' D " ( 0 [,) a ) ) ) |
| 30 | 29 | nfcri | |- F/ a w e. ran ( a e. RR+ |-> ( `' D " ( 0 [,) a ) ) ) |
| 31 | 27 30 | nfan | |- F/ a ( ( ( ( A =/= (/) /\ D e. ( PsMet ` X ) /\ A C_ X ) /\ v e. ( metUnif ` D ) ) /\ u = ( v i^i ( A X. A ) ) ) /\ w e. ran ( a e. RR+ |-> ( `' D " ( 0 [,) a ) ) ) ) |
| 32 | nfv | |- F/ a w C_ v |
|
| 33 | 31 32 | nfan | |- F/ a ( ( ( ( ( A =/= (/) /\ D e. ( PsMet ` X ) /\ A C_ X ) /\ v e. ( metUnif ` D ) ) /\ u = ( v i^i ( A X. A ) ) ) /\ w e. ran ( a e. RR+ |-> ( `' D " ( 0 [,) a ) ) ) ) /\ w C_ v ) |
| 34 | nfmpt1 | |- F/_ a ( a e. RR+ |-> ( `' ( D |` ( A X. A ) ) " ( 0 [,) a ) ) ) |
|
| 35 | 34 | nfrn | |- F/_ a ran ( a e. RR+ |-> ( `' ( D |` ( A X. A ) ) " ( 0 [,) a ) ) ) |
| 36 | nfcv | |- F/_ a ~P u |
|
| 37 | 35 36 | nfin | |- F/_ a ( ran ( a e. RR+ |-> ( `' ( D |` ( A X. A ) ) " ( 0 [,) a ) ) ) i^i ~P u ) |
| 38 | nfcv | |- F/_ a (/) |
|
| 39 | 37 38 | nfne | |- F/ a ( ran ( a e. RR+ |-> ( `' ( D |` ( A X. A ) ) " ( 0 [,) a ) ) ) i^i ~P u ) =/= (/) |
| 40 | simplr | |- ( ( ( ( ( ( ( ( A =/= (/) /\ D e. ( PsMet ` X ) /\ A C_ X ) /\ v e. ( metUnif ` D ) ) /\ u = ( v i^i ( A X. A ) ) ) /\ w e. ran ( a e. RR+ |-> ( `' D " ( 0 [,) a ) ) ) ) /\ w C_ v ) /\ a e. RR+ ) /\ w = ( `' D " ( 0 [,) a ) ) ) -> a e. RR+ ) |
|
| 41 | ineq1 | |- ( w = ( `' D " ( 0 [,) a ) ) -> ( w i^i ( A X. A ) ) = ( ( `' D " ( 0 [,) a ) ) i^i ( A X. A ) ) ) |
|
| 42 | 41 | adantl | |- ( ( ( ( ( ( ( ( A =/= (/) /\ D e. ( PsMet ` X ) /\ A C_ X ) /\ v e. ( metUnif ` D ) ) /\ u = ( v i^i ( A X. A ) ) ) /\ w e. ran ( a e. RR+ |-> ( `' D " ( 0 [,) a ) ) ) ) /\ w C_ v ) /\ a e. RR+ ) /\ w = ( `' D " ( 0 [,) a ) ) ) -> ( w i^i ( A X. A ) ) = ( ( `' D " ( 0 [,) a ) ) i^i ( A X. A ) ) ) |
| 43 | simp2 | |- ( ( A =/= (/) /\ D e. ( PsMet ` X ) /\ A C_ X ) -> D e. ( PsMet ` X ) ) |
|
| 44 | psmetf | |- ( D e. ( PsMet ` X ) -> D : ( X X. X ) --> RR* ) |
|
| 45 | ffun | |- ( D : ( X X. X ) --> RR* -> Fun D ) |
|
| 46 | respreima | |- ( Fun D -> ( `' ( D |` ( A X. A ) ) " ( 0 [,) a ) ) = ( ( `' D " ( 0 [,) a ) ) i^i ( A X. A ) ) ) |
|
| 47 | 43 44 45 46 | 4syl | |- ( ( A =/= (/) /\ D e. ( PsMet ` X ) /\ A C_ X ) -> ( `' ( D |` ( A X. A ) ) " ( 0 [,) a ) ) = ( ( `' D " ( 0 [,) a ) ) i^i ( A X. A ) ) ) |
| 48 | 47 | ad6antr | |- ( ( ( ( ( ( ( ( A =/= (/) /\ D e. ( PsMet ` X ) /\ A C_ X ) /\ v e. ( metUnif ` D ) ) /\ u = ( v i^i ( A X. A ) ) ) /\ w e. ran ( a e. RR+ |-> ( `' D " ( 0 [,) a ) ) ) ) /\ w C_ v ) /\ a e. RR+ ) /\ w = ( `' D " ( 0 [,) a ) ) ) -> ( `' ( D |` ( A X. A ) ) " ( 0 [,) a ) ) = ( ( `' D " ( 0 [,) a ) ) i^i ( A X. A ) ) ) |
| 49 | 42 48 | eqtr4d | |- ( ( ( ( ( ( ( ( A =/= (/) /\ D e. ( PsMet ` X ) /\ A C_ X ) /\ v e. ( metUnif ` D ) ) /\ u = ( v i^i ( A X. A ) ) ) /\ w e. ran ( a e. RR+ |-> ( `' D " ( 0 [,) a ) ) ) ) /\ w C_ v ) /\ a e. RR+ ) /\ w = ( `' D " ( 0 [,) a ) ) ) -> ( w i^i ( A X. A ) ) = ( `' ( D |` ( A X. A ) ) " ( 0 [,) a ) ) ) |
| 50 | rspe | |- ( ( a e. RR+ /\ ( w i^i ( A X. A ) ) = ( `' ( D |` ( A X. A ) ) " ( 0 [,) a ) ) ) -> E. a e. RR+ ( w i^i ( A X. A ) ) = ( `' ( D |` ( A X. A ) ) " ( 0 [,) a ) ) ) |
|
| 51 | 40 49 50 | syl2anc | |- ( ( ( ( ( ( ( ( A =/= (/) /\ D e. ( PsMet ` X ) /\ A C_ X ) /\ v e. ( metUnif ` D ) ) /\ u = ( v i^i ( A X. A ) ) ) /\ w e. ran ( a e. RR+ |-> ( `' D " ( 0 [,) a ) ) ) ) /\ w C_ v ) /\ a e. RR+ ) /\ w = ( `' D " ( 0 [,) a ) ) ) -> E. a e. RR+ ( w i^i ( A X. A ) ) = ( `' ( D |` ( A X. A ) ) " ( 0 [,) a ) ) ) |
| 52 | vex | |- w e. _V |
|
| 53 | 52 | inex1 | |- ( w i^i ( A X. A ) ) e. _V |
| 54 | eqid | |- ( a e. RR+ |-> ( `' ( D |` ( A X. A ) ) " ( 0 [,) a ) ) ) = ( a e. RR+ |-> ( `' ( D |` ( A X. A ) ) " ( 0 [,) a ) ) ) |
|
| 55 | 54 | elrnmpt | |- ( ( w i^i ( A X. A ) ) e. _V -> ( ( w i^i ( A X. A ) ) e. ran ( a e. RR+ |-> ( `' ( D |` ( A X. A ) ) " ( 0 [,) a ) ) ) <-> E. a e. RR+ ( w i^i ( A X. A ) ) = ( `' ( D |` ( A X. A ) ) " ( 0 [,) a ) ) ) ) |
| 56 | 53 55 | ax-mp | |- ( ( w i^i ( A X. A ) ) e. ran ( a e. RR+ |-> ( `' ( D |` ( A X. A ) ) " ( 0 [,) a ) ) ) <-> E. a e. RR+ ( w i^i ( A X. A ) ) = ( `' ( D |` ( A X. A ) ) " ( 0 [,) a ) ) ) |
| 57 | 51 56 | sylibr | |- ( ( ( ( ( ( ( ( A =/= (/) /\ D e. ( PsMet ` X ) /\ A C_ X ) /\ v e. ( metUnif ` D ) ) /\ u = ( v i^i ( A X. A ) ) ) /\ w e. ran ( a e. RR+ |-> ( `' D " ( 0 [,) a ) ) ) ) /\ w C_ v ) /\ a e. RR+ ) /\ w = ( `' D " ( 0 [,) a ) ) ) -> ( w i^i ( A X. A ) ) e. ran ( a e. RR+ |-> ( `' ( D |` ( A X. A ) ) " ( 0 [,) a ) ) ) ) |
| 58 | simpllr | |- ( ( ( ( ( ( ( ( A =/= (/) /\ D e. ( PsMet ` X ) /\ A C_ X ) /\ v e. ( metUnif ` D ) ) /\ u = ( v i^i ( A X. A ) ) ) /\ w e. ran ( a e. RR+ |-> ( `' D " ( 0 [,) a ) ) ) ) /\ w C_ v ) /\ a e. RR+ ) /\ w = ( `' D " ( 0 [,) a ) ) ) -> w C_ v ) |
|
| 59 | ssinss1 | |- ( w C_ v -> ( w i^i ( A X. A ) ) C_ v ) |
|
| 60 | 58 59 | syl | |- ( ( ( ( ( ( ( ( A =/= (/) /\ D e. ( PsMet ` X ) /\ A C_ X ) /\ v e. ( metUnif ` D ) ) /\ u = ( v i^i ( A X. A ) ) ) /\ w e. ran ( a e. RR+ |-> ( `' D " ( 0 [,) a ) ) ) ) /\ w C_ v ) /\ a e. RR+ ) /\ w = ( `' D " ( 0 [,) a ) ) ) -> ( w i^i ( A X. A ) ) C_ v ) |
| 61 | inss2 | |- ( w i^i ( A X. A ) ) C_ ( A X. A ) |
|
| 62 | 61 | a1i | |- ( ( ( ( ( ( ( ( A =/= (/) /\ D e. ( PsMet ` X ) /\ A C_ X ) /\ v e. ( metUnif ` D ) ) /\ u = ( v i^i ( A X. A ) ) ) /\ w e. ran ( a e. RR+ |-> ( `' D " ( 0 [,) a ) ) ) ) /\ w C_ v ) /\ a e. RR+ ) /\ w = ( `' D " ( 0 [,) a ) ) ) -> ( w i^i ( A X. A ) ) C_ ( A X. A ) ) |
| 63 | pweq | |- ( u = ( v i^i ( A X. A ) ) -> ~P u = ~P ( v i^i ( A X. A ) ) ) |
|
| 64 | 63 | eleq2d | |- ( u = ( v i^i ( A X. A ) ) -> ( ( w i^i ( A X. A ) ) e. ~P u <-> ( w i^i ( A X. A ) ) e. ~P ( v i^i ( A X. A ) ) ) ) |
| 65 | 53 | elpw | |- ( ( w i^i ( A X. A ) ) e. ~P ( v i^i ( A X. A ) ) <-> ( w i^i ( A X. A ) ) C_ ( v i^i ( A X. A ) ) ) |
| 66 | 64 65 | bitrdi | |- ( u = ( v i^i ( A X. A ) ) -> ( ( w i^i ( A X. A ) ) e. ~P u <-> ( w i^i ( A X. A ) ) C_ ( v i^i ( A X. A ) ) ) ) |
| 67 | ssin | |- ( ( ( w i^i ( A X. A ) ) C_ v /\ ( w i^i ( A X. A ) ) C_ ( A X. A ) ) <-> ( w i^i ( A X. A ) ) C_ ( v i^i ( A X. A ) ) ) |
|
| 68 | 66 67 | bitr4di | |- ( u = ( v i^i ( A X. A ) ) -> ( ( w i^i ( A X. A ) ) e. ~P u <-> ( ( w i^i ( A X. A ) ) C_ v /\ ( w i^i ( A X. A ) ) C_ ( A X. A ) ) ) ) |
| 69 | 68 | ad5antlr | |- ( ( ( ( ( ( ( ( A =/= (/) /\ D e. ( PsMet ` X ) /\ A C_ X ) /\ v e. ( metUnif ` D ) ) /\ u = ( v i^i ( A X. A ) ) ) /\ w e. ran ( a e. RR+ |-> ( `' D " ( 0 [,) a ) ) ) ) /\ w C_ v ) /\ a e. RR+ ) /\ w = ( `' D " ( 0 [,) a ) ) ) -> ( ( w i^i ( A X. A ) ) e. ~P u <-> ( ( w i^i ( A X. A ) ) C_ v /\ ( w i^i ( A X. A ) ) C_ ( A X. A ) ) ) ) |
| 70 | 60 62 69 | mpbir2and | |- ( ( ( ( ( ( ( ( A =/= (/) /\ D e. ( PsMet ` X ) /\ A C_ X ) /\ v e. ( metUnif ` D ) ) /\ u = ( v i^i ( A X. A ) ) ) /\ w e. ran ( a e. RR+ |-> ( `' D " ( 0 [,) a ) ) ) ) /\ w C_ v ) /\ a e. RR+ ) /\ w = ( `' D " ( 0 [,) a ) ) ) -> ( w i^i ( A X. A ) ) e. ~P u ) |
| 71 | inelcm | |- ( ( ( w i^i ( A X. A ) ) e. ran ( a e. RR+ |-> ( `' ( D |` ( A X. A ) ) " ( 0 [,) a ) ) ) /\ ( w i^i ( A X. A ) ) e. ~P u ) -> ( ran ( a e. RR+ |-> ( `' ( D |` ( A X. A ) ) " ( 0 [,) a ) ) ) i^i ~P u ) =/= (/) ) |
|
| 72 | 57 70 71 | syl2anc | |- ( ( ( ( ( ( ( ( A =/= (/) /\ D e. ( PsMet ` X ) /\ A C_ X ) /\ v e. ( metUnif ` D ) ) /\ u = ( v i^i ( A X. A ) ) ) /\ w e. ran ( a e. RR+ |-> ( `' D " ( 0 [,) a ) ) ) ) /\ w C_ v ) /\ a e. RR+ ) /\ w = ( `' D " ( 0 [,) a ) ) ) -> ( ran ( a e. RR+ |-> ( `' ( D |` ( A X. A ) ) " ( 0 [,) a ) ) ) i^i ~P u ) =/= (/) ) |
| 73 | simplr | |- ( ( ( ( ( ( A =/= (/) /\ D e. ( PsMet ` X ) /\ A C_ X ) /\ v e. ( metUnif ` D ) ) /\ u = ( v i^i ( A X. A ) ) ) /\ w e. ran ( a e. RR+ |-> ( `' D " ( 0 [,) a ) ) ) ) /\ w C_ v ) -> w e. ran ( a e. RR+ |-> ( `' D " ( 0 [,) a ) ) ) ) |
|
| 74 | eqid | |- ( a e. RR+ |-> ( `' D " ( 0 [,) a ) ) ) = ( a e. RR+ |-> ( `' D " ( 0 [,) a ) ) ) |
|
| 75 | 74 | elrnmpt | |- ( w e. _V -> ( w e. ran ( a e. RR+ |-> ( `' D " ( 0 [,) a ) ) ) <-> E. a e. RR+ w = ( `' D " ( 0 [,) a ) ) ) ) |
| 76 | 75 | elv | |- ( w e. ran ( a e. RR+ |-> ( `' D " ( 0 [,) a ) ) ) <-> E. a e. RR+ w = ( `' D " ( 0 [,) a ) ) ) |
| 77 | 73 76 | sylib | |- ( ( ( ( ( ( A =/= (/) /\ D e. ( PsMet ` X ) /\ A C_ X ) /\ v e. ( metUnif ` D ) ) /\ u = ( v i^i ( A X. A ) ) ) /\ w e. ran ( a e. RR+ |-> ( `' D " ( 0 [,) a ) ) ) ) /\ w C_ v ) -> E. a e. RR+ w = ( `' D " ( 0 [,) a ) ) ) |
| 78 | 33 39 72 77 | r19.29af2 | |- ( ( ( ( ( ( A =/= (/) /\ D e. ( PsMet ` X ) /\ A C_ X ) /\ v e. ( metUnif ` D ) ) /\ u = ( v i^i ( A X. A ) ) ) /\ w e. ran ( a e. RR+ |-> ( `' D " ( 0 [,) a ) ) ) ) /\ w C_ v ) -> ( ran ( a e. RR+ |-> ( `' ( D |` ( A X. A ) ) " ( 0 [,) a ) ) ) i^i ~P u ) =/= (/) ) |
| 79 | ssn0 | |- ( ( A C_ X /\ A =/= (/) ) -> X =/= (/) ) |
|
| 80 | 79 | ancoms | |- ( ( A =/= (/) /\ A C_ X ) -> X =/= (/) ) |
| 81 | 80 | 3adant2 | |- ( ( A =/= (/) /\ D e. ( PsMet ` X ) /\ A C_ X ) -> X =/= (/) ) |
| 82 | metuel | |- ( ( X =/= (/) /\ D e. ( PsMet ` X ) ) -> ( v e. ( metUnif ` D ) <-> ( v C_ ( X X. X ) /\ E. w e. ran ( a e. RR+ |-> ( `' D " ( 0 [,) a ) ) ) w C_ v ) ) ) |
|
| 83 | 81 43 82 | syl2anc | |- ( ( A =/= (/) /\ D e. ( PsMet ` X ) /\ A C_ X ) -> ( v e. ( metUnif ` D ) <-> ( v C_ ( X X. X ) /\ E. w e. ran ( a e. RR+ |-> ( `' D " ( 0 [,) a ) ) ) w C_ v ) ) ) |
| 84 | 83 | simplbda | |- ( ( ( A =/= (/) /\ D e. ( PsMet ` X ) /\ A C_ X ) /\ v e. ( metUnif ` D ) ) -> E. w e. ran ( a e. RR+ |-> ( `' D " ( 0 [,) a ) ) ) w C_ v ) |
| 85 | 84 | adantr | |- ( ( ( ( A =/= (/) /\ D e. ( PsMet ` X ) /\ A C_ X ) /\ v e. ( metUnif ` D ) ) /\ u = ( v i^i ( A X. A ) ) ) -> E. w e. ran ( a e. RR+ |-> ( `' D " ( 0 [,) a ) ) ) w C_ v ) |
| 86 | 78 85 | r19.29a | |- ( ( ( ( A =/= (/) /\ D e. ( PsMet ` X ) /\ A C_ X ) /\ v e. ( metUnif ` D ) ) /\ u = ( v i^i ( A X. A ) ) ) -> ( ran ( a e. RR+ |-> ( `' ( D |` ( A X. A ) ) " ( 0 [,) a ) ) ) i^i ~P u ) =/= (/) ) |
| 87 | 86 | r19.29an | |- ( ( ( A =/= (/) /\ D e. ( PsMet ` X ) /\ A C_ X ) /\ E. v e. ( metUnif ` D ) u = ( v i^i ( A X. A ) ) ) -> ( ran ( a e. RR+ |-> ( `' ( D |` ( A X. A ) ) " ( 0 [,) a ) ) ) i^i ~P u ) =/= (/) ) |
| 88 | 26 87 | jca | |- ( ( ( A =/= (/) /\ D e. ( PsMet ` X ) /\ A C_ X ) /\ E. v e. ( metUnif ` D ) u = ( v i^i ( A X. A ) ) ) -> ( u e. ~P ( A X. A ) /\ ( ran ( a e. RR+ |-> ( `' ( D |` ( A X. A ) ) " ( 0 [,) a ) ) ) i^i ~P u ) =/= (/) ) ) |
| 89 | simprl | |- ( ( ( A =/= (/) /\ D e. ( PsMet ` X ) /\ A C_ X ) /\ ( u e. ~P ( A X. A ) /\ ( ran ( a e. RR+ |-> ( `' ( D |` ( A X. A ) ) " ( 0 [,) a ) ) ) i^i ~P u ) =/= (/) ) ) -> u e. ~P ( A X. A ) ) |
|
| 90 | 89 | elpwid | |- ( ( ( A =/= (/) /\ D e. ( PsMet ` X ) /\ A C_ X ) /\ ( u e. ~P ( A X. A ) /\ ( ran ( a e. RR+ |-> ( `' ( D |` ( A X. A ) ) " ( 0 [,) a ) ) ) i^i ~P u ) =/= (/) ) ) -> u C_ ( A X. A ) ) |
| 91 | simpl3 | |- ( ( ( A =/= (/) /\ D e. ( PsMet ` X ) /\ A C_ X ) /\ ( u e. ~P ( A X. A ) /\ ( ran ( a e. RR+ |-> ( `' ( D |` ( A X. A ) ) " ( 0 [,) a ) ) ) i^i ~P u ) =/= (/) ) ) -> A C_ X ) |
|
| 92 | xpss12 | |- ( ( A C_ X /\ A C_ X ) -> ( A X. A ) C_ ( X X. X ) ) |
|
| 93 | 91 91 92 | syl2anc | |- ( ( ( A =/= (/) /\ D e. ( PsMet ` X ) /\ A C_ X ) /\ ( u e. ~P ( A X. A ) /\ ( ran ( a e. RR+ |-> ( `' ( D |` ( A X. A ) ) " ( 0 [,) a ) ) ) i^i ~P u ) =/= (/) ) ) -> ( A X. A ) C_ ( X X. X ) ) |
| 94 | 90 93 | sstrd | |- ( ( ( A =/= (/) /\ D e. ( PsMet ` X ) /\ A C_ X ) /\ ( u e. ~P ( A X. A ) /\ ( ran ( a e. RR+ |-> ( `' ( D |` ( A X. A ) ) " ( 0 [,) a ) ) ) i^i ~P u ) =/= (/) ) ) -> u C_ ( X X. X ) ) |
| 95 | difssd | |- ( ( ( A =/= (/) /\ D e. ( PsMet ` X ) /\ A C_ X ) /\ ( u e. ~P ( A X. A ) /\ ( ran ( a e. RR+ |-> ( `' ( D |` ( A X. A ) ) " ( 0 [,) a ) ) ) i^i ~P u ) =/= (/) ) ) -> ( ( X X. X ) \ ( A X. A ) ) C_ ( X X. X ) ) |
|
| 96 | 94 95 | unssd | |- ( ( ( A =/= (/) /\ D e. ( PsMet ` X ) /\ A C_ X ) /\ ( u e. ~P ( A X. A ) /\ ( ran ( a e. RR+ |-> ( `' ( D |` ( A X. A ) ) " ( 0 [,) a ) ) ) i^i ~P u ) =/= (/) ) ) -> ( u u. ( ( X X. X ) \ ( A X. A ) ) ) C_ ( X X. X ) ) |
| 97 | simplr | |- ( ( ( ( ( ( A =/= (/) /\ D e. ( PsMet ` X ) /\ A C_ X ) /\ ( u e. ~P ( A X. A ) /\ ( ran ( a e. RR+ |-> ( `' ( D |` ( A X. A ) ) " ( 0 [,) a ) ) ) i^i ~P u ) =/= (/) ) ) /\ v e. ~P u ) /\ b e. RR+ ) /\ v = ( `' ( D |` ( A X. A ) ) " ( 0 [,) b ) ) ) -> b e. RR+ ) |
|
| 98 | eqidd | |- ( ( ( ( ( ( A =/= (/) /\ D e. ( PsMet ` X ) /\ A C_ X ) /\ ( u e. ~P ( A X. A ) /\ ( ran ( a e. RR+ |-> ( `' ( D |` ( A X. A ) ) " ( 0 [,) a ) ) ) i^i ~P u ) =/= (/) ) ) /\ v e. ~P u ) /\ b e. RR+ ) /\ v = ( `' ( D |` ( A X. A ) ) " ( 0 [,) b ) ) ) -> ( `' D " ( 0 [,) b ) ) = ( `' D " ( 0 [,) b ) ) ) |
|
| 99 | 4 | imaeq2d | |- ( a = b -> ( `' D " ( 0 [,) a ) ) = ( `' D " ( 0 [,) b ) ) ) |
| 100 | 99 | rspceeqv | |- ( ( b e. RR+ /\ ( `' D " ( 0 [,) b ) ) = ( `' D " ( 0 [,) b ) ) ) -> E. a e. RR+ ( `' D " ( 0 [,) b ) ) = ( `' D " ( 0 [,) a ) ) ) |
| 101 | 97 98 100 | syl2anc | |- ( ( ( ( ( ( A =/= (/) /\ D e. ( PsMet ` X ) /\ A C_ X ) /\ ( u e. ~P ( A X. A ) /\ ( ran ( a e. RR+ |-> ( `' ( D |` ( A X. A ) ) " ( 0 [,) a ) ) ) i^i ~P u ) =/= (/) ) ) /\ v e. ~P u ) /\ b e. RR+ ) /\ v = ( `' ( D |` ( A X. A ) ) " ( 0 [,) b ) ) ) -> E. a e. RR+ ( `' D " ( 0 [,) b ) ) = ( `' D " ( 0 [,) a ) ) ) |
| 102 | 43 | ad4antr | |- ( ( ( ( ( ( A =/= (/) /\ D e. ( PsMet ` X ) /\ A C_ X ) /\ ( u e. ~P ( A X. A ) /\ ( ran ( a e. RR+ |-> ( `' ( D |` ( A X. A ) ) " ( 0 [,) a ) ) ) i^i ~P u ) =/= (/) ) ) /\ v e. ~P u ) /\ b e. RR+ ) /\ v = ( `' ( D |` ( A X. A ) ) " ( 0 [,) b ) ) ) -> D e. ( PsMet ` X ) ) |
| 103 | cnvexg | |- ( D e. ( PsMet ` X ) -> `' D e. _V ) |
|
| 104 | imaexg | |- ( `' D e. _V -> ( `' D " ( 0 [,) b ) ) e. _V ) |
|
| 105 | 74 | elrnmpt | |- ( ( `' D " ( 0 [,) b ) ) e. _V -> ( ( `' D " ( 0 [,) b ) ) e. ran ( a e. RR+ |-> ( `' D " ( 0 [,) a ) ) ) <-> E. a e. RR+ ( `' D " ( 0 [,) b ) ) = ( `' D " ( 0 [,) a ) ) ) ) |
| 106 | 102 103 104 105 | 4syl | |- ( ( ( ( ( ( A =/= (/) /\ D e. ( PsMet ` X ) /\ A C_ X ) /\ ( u e. ~P ( A X. A ) /\ ( ran ( a e. RR+ |-> ( `' ( D |` ( A X. A ) ) " ( 0 [,) a ) ) ) i^i ~P u ) =/= (/) ) ) /\ v e. ~P u ) /\ b e. RR+ ) /\ v = ( `' ( D |` ( A X. A ) ) " ( 0 [,) b ) ) ) -> ( ( `' D " ( 0 [,) b ) ) e. ran ( a e. RR+ |-> ( `' D " ( 0 [,) a ) ) ) <-> E. a e. RR+ ( `' D " ( 0 [,) b ) ) = ( `' D " ( 0 [,) a ) ) ) ) |
| 107 | 101 106 | mpbird | |- ( ( ( ( ( ( A =/= (/) /\ D e. ( PsMet ` X ) /\ A C_ X ) /\ ( u e. ~P ( A X. A ) /\ ( ran ( a e. RR+ |-> ( `' ( D |` ( A X. A ) ) " ( 0 [,) a ) ) ) i^i ~P u ) =/= (/) ) ) /\ v e. ~P u ) /\ b e. RR+ ) /\ v = ( `' ( D |` ( A X. A ) ) " ( 0 [,) b ) ) ) -> ( `' D " ( 0 [,) b ) ) e. ran ( a e. RR+ |-> ( `' D " ( 0 [,) a ) ) ) ) |
| 108 | cnvimass | |- ( `' D " ( 0 [,) b ) ) C_ dom D |
|
| 109 | 108 44 | fssdm | |- ( D e. ( PsMet ` X ) -> ( `' D " ( 0 [,) b ) ) C_ ( X X. X ) ) |
| 110 | 102 109 | syl | |- ( ( ( ( ( ( A =/= (/) /\ D e. ( PsMet ` X ) /\ A C_ X ) /\ ( u e. ~P ( A X. A ) /\ ( ran ( a e. RR+ |-> ( `' ( D |` ( A X. A ) ) " ( 0 [,) a ) ) ) i^i ~P u ) =/= (/) ) ) /\ v e. ~P u ) /\ b e. RR+ ) /\ v = ( `' ( D |` ( A X. A ) ) " ( 0 [,) b ) ) ) -> ( `' D " ( 0 [,) b ) ) C_ ( X X. X ) ) |
| 111 | ssdif0 | |- ( ( `' D " ( 0 [,) b ) ) C_ ( X X. X ) <-> ( ( `' D " ( 0 [,) b ) ) \ ( X X. X ) ) = (/) ) |
|
| 112 | 110 111 | sylib | |- ( ( ( ( ( ( A =/= (/) /\ D e. ( PsMet ` X ) /\ A C_ X ) /\ ( u e. ~P ( A X. A ) /\ ( ran ( a e. RR+ |-> ( `' ( D |` ( A X. A ) ) " ( 0 [,) a ) ) ) i^i ~P u ) =/= (/) ) ) /\ v e. ~P u ) /\ b e. RR+ ) /\ v = ( `' ( D |` ( A X. A ) ) " ( 0 [,) b ) ) ) -> ( ( `' D " ( 0 [,) b ) ) \ ( X X. X ) ) = (/) ) |
| 113 | 0ss | |- (/) C_ u |
|
| 114 | 112 113 | eqsstrdi | |- ( ( ( ( ( ( A =/= (/) /\ D e. ( PsMet ` X ) /\ A C_ X ) /\ ( u e. ~P ( A X. A ) /\ ( ran ( a e. RR+ |-> ( `' ( D |` ( A X. A ) ) " ( 0 [,) a ) ) ) i^i ~P u ) =/= (/) ) ) /\ v e. ~P u ) /\ b e. RR+ ) /\ v = ( `' ( D |` ( A X. A ) ) " ( 0 [,) b ) ) ) -> ( ( `' D " ( 0 [,) b ) ) \ ( X X. X ) ) C_ u ) |
| 115 | respreima | |- ( Fun D -> ( `' ( D |` ( A X. A ) ) " ( 0 [,) b ) ) = ( ( `' D " ( 0 [,) b ) ) i^i ( A X. A ) ) ) |
|
| 116 | 102 44 45 115 | 4syl | |- ( ( ( ( ( ( A =/= (/) /\ D e. ( PsMet ` X ) /\ A C_ X ) /\ ( u e. ~P ( A X. A ) /\ ( ran ( a e. RR+ |-> ( `' ( D |` ( A X. A ) ) " ( 0 [,) a ) ) ) i^i ~P u ) =/= (/) ) ) /\ v e. ~P u ) /\ b e. RR+ ) /\ v = ( `' ( D |` ( A X. A ) ) " ( 0 [,) b ) ) ) -> ( `' ( D |` ( A X. A ) ) " ( 0 [,) b ) ) = ( ( `' D " ( 0 [,) b ) ) i^i ( A X. A ) ) ) |
| 117 | simpr | |- ( ( ( ( ( ( A =/= (/) /\ D e. ( PsMet ` X ) /\ A C_ X ) /\ ( u e. ~P ( A X. A ) /\ ( ran ( a e. RR+ |-> ( `' ( D |` ( A X. A ) ) " ( 0 [,) a ) ) ) i^i ~P u ) =/= (/) ) ) /\ v e. ~P u ) /\ b e. RR+ ) /\ v = ( `' ( D |` ( A X. A ) ) " ( 0 [,) b ) ) ) -> v = ( `' ( D |` ( A X. A ) ) " ( 0 [,) b ) ) ) |
|
| 118 | simpllr | |- ( ( ( ( ( ( A =/= (/) /\ D e. ( PsMet ` X ) /\ A C_ X ) /\ ( u e. ~P ( A X. A ) /\ ( ran ( a e. RR+ |-> ( `' ( D |` ( A X. A ) ) " ( 0 [,) a ) ) ) i^i ~P u ) =/= (/) ) ) /\ v e. ~P u ) /\ b e. RR+ ) /\ v = ( `' ( D |` ( A X. A ) ) " ( 0 [,) b ) ) ) -> v e. ~P u ) |
|
| 119 | 118 | elpwid | |- ( ( ( ( ( ( A =/= (/) /\ D e. ( PsMet ` X ) /\ A C_ X ) /\ ( u e. ~P ( A X. A ) /\ ( ran ( a e. RR+ |-> ( `' ( D |` ( A X. A ) ) " ( 0 [,) a ) ) ) i^i ~P u ) =/= (/) ) ) /\ v e. ~P u ) /\ b e. RR+ ) /\ v = ( `' ( D |` ( A X. A ) ) " ( 0 [,) b ) ) ) -> v C_ u ) |
| 120 | 117 119 | eqsstrrd | |- ( ( ( ( ( ( A =/= (/) /\ D e. ( PsMet ` X ) /\ A C_ X ) /\ ( u e. ~P ( A X. A ) /\ ( ran ( a e. RR+ |-> ( `' ( D |` ( A X. A ) ) " ( 0 [,) a ) ) ) i^i ~P u ) =/= (/) ) ) /\ v e. ~P u ) /\ b e. RR+ ) /\ v = ( `' ( D |` ( A X. A ) ) " ( 0 [,) b ) ) ) -> ( `' ( D |` ( A X. A ) ) " ( 0 [,) b ) ) C_ u ) |
| 121 | 116 120 | eqsstrrd | |- ( ( ( ( ( ( A =/= (/) /\ D e. ( PsMet ` X ) /\ A C_ X ) /\ ( u e. ~P ( A X. A ) /\ ( ran ( a e. RR+ |-> ( `' ( D |` ( A X. A ) ) " ( 0 [,) a ) ) ) i^i ~P u ) =/= (/) ) ) /\ v e. ~P u ) /\ b e. RR+ ) /\ v = ( `' ( D |` ( A X. A ) ) " ( 0 [,) b ) ) ) -> ( ( `' D " ( 0 [,) b ) ) i^i ( A X. A ) ) C_ u ) |
| 122 | 114 121 | unssd | |- ( ( ( ( ( ( A =/= (/) /\ D e. ( PsMet ` X ) /\ A C_ X ) /\ ( u e. ~P ( A X. A ) /\ ( ran ( a e. RR+ |-> ( `' ( D |` ( A X. A ) ) " ( 0 [,) a ) ) ) i^i ~P u ) =/= (/) ) ) /\ v e. ~P u ) /\ b e. RR+ ) /\ v = ( `' ( D |` ( A X. A ) ) " ( 0 [,) b ) ) ) -> ( ( ( `' D " ( 0 [,) b ) ) \ ( X X. X ) ) u. ( ( `' D " ( 0 [,) b ) ) i^i ( A X. A ) ) ) C_ u ) |
| 123 | ssundif | |- ( ( `' D " ( 0 [,) b ) ) C_ ( u u. ( ( X X. X ) \ ( A X. A ) ) ) <-> ( ( `' D " ( 0 [,) b ) ) \ u ) C_ ( ( X X. X ) \ ( A X. A ) ) ) |
|
| 124 | difcom | |- ( ( ( `' D " ( 0 [,) b ) ) \ u ) C_ ( ( X X. X ) \ ( A X. A ) ) <-> ( ( `' D " ( 0 [,) b ) ) \ ( ( X X. X ) \ ( A X. A ) ) ) C_ u ) |
|
| 125 | difdif2 | |- ( ( `' D " ( 0 [,) b ) ) \ ( ( X X. X ) \ ( A X. A ) ) ) = ( ( ( `' D " ( 0 [,) b ) ) \ ( X X. X ) ) u. ( ( `' D " ( 0 [,) b ) ) i^i ( A X. A ) ) ) |
|
| 126 | 125 | sseq1i | |- ( ( ( `' D " ( 0 [,) b ) ) \ ( ( X X. X ) \ ( A X. A ) ) ) C_ u <-> ( ( ( `' D " ( 0 [,) b ) ) \ ( X X. X ) ) u. ( ( `' D " ( 0 [,) b ) ) i^i ( A X. A ) ) ) C_ u ) |
| 127 | 123 124 126 | 3bitri | |- ( ( `' D " ( 0 [,) b ) ) C_ ( u u. ( ( X X. X ) \ ( A X. A ) ) ) <-> ( ( ( `' D " ( 0 [,) b ) ) \ ( X X. X ) ) u. ( ( `' D " ( 0 [,) b ) ) i^i ( A X. A ) ) ) C_ u ) |
| 128 | 122 127 | sylibr | |- ( ( ( ( ( ( A =/= (/) /\ D e. ( PsMet ` X ) /\ A C_ X ) /\ ( u e. ~P ( A X. A ) /\ ( ran ( a e. RR+ |-> ( `' ( D |` ( A X. A ) ) " ( 0 [,) a ) ) ) i^i ~P u ) =/= (/) ) ) /\ v e. ~P u ) /\ b e. RR+ ) /\ v = ( `' ( D |` ( A X. A ) ) " ( 0 [,) b ) ) ) -> ( `' D " ( 0 [,) b ) ) C_ ( u u. ( ( X X. X ) \ ( A X. A ) ) ) ) |
| 129 | sseq1 | |- ( w = ( `' D " ( 0 [,) b ) ) -> ( w C_ ( u u. ( ( X X. X ) \ ( A X. A ) ) ) <-> ( `' D " ( 0 [,) b ) ) C_ ( u u. ( ( X X. X ) \ ( A X. A ) ) ) ) ) |
|
| 130 | 129 | rspcev | |- ( ( ( `' D " ( 0 [,) b ) ) e. ran ( a e. RR+ |-> ( `' D " ( 0 [,) a ) ) ) /\ ( `' D " ( 0 [,) b ) ) C_ ( u u. ( ( X X. X ) \ ( A X. A ) ) ) ) -> E. w e. ran ( a e. RR+ |-> ( `' D " ( 0 [,) a ) ) ) w C_ ( u u. ( ( X X. X ) \ ( A X. A ) ) ) ) |
| 131 | 107 128 130 | syl2anc | |- ( ( ( ( ( ( A =/= (/) /\ D e. ( PsMet ` X ) /\ A C_ X ) /\ ( u e. ~P ( A X. A ) /\ ( ran ( a e. RR+ |-> ( `' ( D |` ( A X. A ) ) " ( 0 [,) a ) ) ) i^i ~P u ) =/= (/) ) ) /\ v e. ~P u ) /\ b e. RR+ ) /\ v = ( `' ( D |` ( A X. A ) ) " ( 0 [,) b ) ) ) -> E. w e. ran ( a e. RR+ |-> ( `' D " ( 0 [,) a ) ) ) w C_ ( u u. ( ( X X. X ) \ ( A X. A ) ) ) ) |
| 132 | elin | |- ( v e. ( ran ( a e. RR+ |-> ( `' ( D |` ( A X. A ) ) " ( 0 [,) a ) ) ) i^i ~P u ) <-> ( v e. ran ( a e. RR+ |-> ( `' ( D |` ( A X. A ) ) " ( 0 [,) a ) ) ) /\ v e. ~P u ) ) |
|
| 133 | 6 | elrnmpt | |- ( v e. _V -> ( v e. ran ( a e. RR+ |-> ( `' ( D |` ( A X. A ) ) " ( 0 [,) a ) ) ) <-> E. b e. RR+ v = ( `' ( D |` ( A X. A ) ) " ( 0 [,) b ) ) ) ) |
| 134 | 133 | elv | |- ( v e. ran ( a e. RR+ |-> ( `' ( D |` ( A X. A ) ) " ( 0 [,) a ) ) ) <-> E. b e. RR+ v = ( `' ( D |` ( A X. A ) ) " ( 0 [,) b ) ) ) |
| 135 | 134 | anbi1i | |- ( ( v e. ran ( a e. RR+ |-> ( `' ( D |` ( A X. A ) ) " ( 0 [,) a ) ) ) /\ v e. ~P u ) <-> ( E. b e. RR+ v = ( `' ( D |` ( A X. A ) ) " ( 0 [,) b ) ) /\ v e. ~P u ) ) |
| 136 | ancom | |- ( ( E. b e. RR+ v = ( `' ( D |` ( A X. A ) ) " ( 0 [,) b ) ) /\ v e. ~P u ) <-> ( v e. ~P u /\ E. b e. RR+ v = ( `' ( D |` ( A X. A ) ) " ( 0 [,) b ) ) ) ) |
|
| 137 | 132 135 136 | 3bitri | |- ( v e. ( ran ( a e. RR+ |-> ( `' ( D |` ( A X. A ) ) " ( 0 [,) a ) ) ) i^i ~P u ) <-> ( v e. ~P u /\ E. b e. RR+ v = ( `' ( D |` ( A X. A ) ) " ( 0 [,) b ) ) ) ) |
| 138 | 137 | exbii | |- ( E. v v e. ( ran ( a e. RR+ |-> ( `' ( D |` ( A X. A ) ) " ( 0 [,) a ) ) ) i^i ~P u ) <-> E. v ( v e. ~P u /\ E. b e. RR+ v = ( `' ( D |` ( A X. A ) ) " ( 0 [,) b ) ) ) ) |
| 139 | n0 | |- ( ( ran ( a e. RR+ |-> ( `' ( D |` ( A X. A ) ) " ( 0 [,) a ) ) ) i^i ~P u ) =/= (/) <-> E. v v e. ( ran ( a e. RR+ |-> ( `' ( D |` ( A X. A ) ) " ( 0 [,) a ) ) ) i^i ~P u ) ) |
|
| 140 | df-rex | |- ( E. v e. ~P u E. b e. RR+ v = ( `' ( D |` ( A X. A ) ) " ( 0 [,) b ) ) <-> E. v ( v e. ~P u /\ E. b e. RR+ v = ( `' ( D |` ( A X. A ) ) " ( 0 [,) b ) ) ) ) |
|
| 141 | 138 139 140 | 3bitr4i | |- ( ( ran ( a e. RR+ |-> ( `' ( D |` ( A X. A ) ) " ( 0 [,) a ) ) ) i^i ~P u ) =/= (/) <-> E. v e. ~P u E. b e. RR+ v = ( `' ( D |` ( A X. A ) ) " ( 0 [,) b ) ) ) |
| 142 | 141 | biimpi | |- ( ( ran ( a e. RR+ |-> ( `' ( D |` ( A X. A ) ) " ( 0 [,) a ) ) ) i^i ~P u ) =/= (/) -> E. v e. ~P u E. b e. RR+ v = ( `' ( D |` ( A X. A ) ) " ( 0 [,) b ) ) ) |
| 143 | 142 | ad2antll | |- ( ( ( A =/= (/) /\ D e. ( PsMet ` X ) /\ A C_ X ) /\ ( u e. ~P ( A X. A ) /\ ( ran ( a e. RR+ |-> ( `' ( D |` ( A X. A ) ) " ( 0 [,) a ) ) ) i^i ~P u ) =/= (/) ) ) -> E. v e. ~P u E. b e. RR+ v = ( `' ( D |` ( A X. A ) ) " ( 0 [,) b ) ) ) |
| 144 | 131 143 | r19.29vva | |- ( ( ( A =/= (/) /\ D e. ( PsMet ` X ) /\ A C_ X ) /\ ( u e. ~P ( A X. A ) /\ ( ran ( a e. RR+ |-> ( `' ( D |` ( A X. A ) ) " ( 0 [,) a ) ) ) i^i ~P u ) =/= (/) ) ) -> E. w e. ran ( a e. RR+ |-> ( `' D " ( 0 [,) a ) ) ) w C_ ( u u. ( ( X X. X ) \ ( A X. A ) ) ) ) |
| 145 | 81 | adantr | |- ( ( ( A =/= (/) /\ D e. ( PsMet ` X ) /\ A C_ X ) /\ ( u e. ~P ( A X. A ) /\ ( ran ( a e. RR+ |-> ( `' ( D |` ( A X. A ) ) " ( 0 [,) a ) ) ) i^i ~P u ) =/= (/) ) ) -> X =/= (/) ) |
| 146 | 43 | adantr | |- ( ( ( A =/= (/) /\ D e. ( PsMet ` X ) /\ A C_ X ) /\ ( u e. ~P ( A X. A ) /\ ( ran ( a e. RR+ |-> ( `' ( D |` ( A X. A ) ) " ( 0 [,) a ) ) ) i^i ~P u ) =/= (/) ) ) -> D e. ( PsMet ` X ) ) |
| 147 | metuel | |- ( ( X =/= (/) /\ D e. ( PsMet ` X ) ) -> ( ( u u. ( ( X X. X ) \ ( A X. A ) ) ) e. ( metUnif ` D ) <-> ( ( u u. ( ( X X. X ) \ ( A X. A ) ) ) C_ ( X X. X ) /\ E. w e. ran ( a e. RR+ |-> ( `' D " ( 0 [,) a ) ) ) w C_ ( u u. ( ( X X. X ) \ ( A X. A ) ) ) ) ) ) |
|
| 148 | 145 146 147 | syl2anc | |- ( ( ( A =/= (/) /\ D e. ( PsMet ` X ) /\ A C_ X ) /\ ( u e. ~P ( A X. A ) /\ ( ran ( a e. RR+ |-> ( `' ( D |` ( A X. A ) ) " ( 0 [,) a ) ) ) i^i ~P u ) =/= (/) ) ) -> ( ( u u. ( ( X X. X ) \ ( A X. A ) ) ) e. ( metUnif ` D ) <-> ( ( u u. ( ( X X. X ) \ ( A X. A ) ) ) C_ ( X X. X ) /\ E. w e. ran ( a e. RR+ |-> ( `' D " ( 0 [,) a ) ) ) w C_ ( u u. ( ( X X. X ) \ ( A X. A ) ) ) ) ) ) |
| 149 | 96 144 148 | mpbir2and | |- ( ( ( A =/= (/) /\ D e. ( PsMet ` X ) /\ A C_ X ) /\ ( u e. ~P ( A X. A ) /\ ( ran ( a e. RR+ |-> ( `' ( D |` ( A X. A ) ) " ( 0 [,) a ) ) ) i^i ~P u ) =/= (/) ) ) -> ( u u. ( ( X X. X ) \ ( A X. A ) ) ) e. ( metUnif ` D ) ) |
| 150 | indir | |- ( ( u u. ( ( X X. X ) \ ( A X. A ) ) ) i^i ( A X. A ) ) = ( ( u i^i ( A X. A ) ) u. ( ( ( X X. X ) \ ( A X. A ) ) i^i ( A X. A ) ) ) |
|
| 151 | disjdifr | |- ( ( ( X X. X ) \ ( A X. A ) ) i^i ( A X. A ) ) = (/) |
|
| 152 | 151 | uneq2i | |- ( ( u i^i ( A X. A ) ) u. ( ( ( X X. X ) \ ( A X. A ) ) i^i ( A X. A ) ) ) = ( ( u i^i ( A X. A ) ) u. (/) ) |
| 153 | un0 | |- ( ( u i^i ( A X. A ) ) u. (/) ) = ( u i^i ( A X. A ) ) |
|
| 154 | 150 152 153 | 3eqtri | |- ( ( u u. ( ( X X. X ) \ ( A X. A ) ) ) i^i ( A X. A ) ) = ( u i^i ( A X. A ) ) |
| 155 | dfss2 | |- ( u C_ ( A X. A ) <-> ( u i^i ( A X. A ) ) = u ) |
|
| 156 | 90 155 | sylib | |- ( ( ( A =/= (/) /\ D e. ( PsMet ` X ) /\ A C_ X ) /\ ( u e. ~P ( A X. A ) /\ ( ran ( a e. RR+ |-> ( `' ( D |` ( A X. A ) ) " ( 0 [,) a ) ) ) i^i ~P u ) =/= (/) ) ) -> ( u i^i ( A X. A ) ) = u ) |
| 157 | 154 156 | eqtr2id | |- ( ( ( A =/= (/) /\ D e. ( PsMet ` X ) /\ A C_ X ) /\ ( u e. ~P ( A X. A ) /\ ( ran ( a e. RR+ |-> ( `' ( D |` ( A X. A ) ) " ( 0 [,) a ) ) ) i^i ~P u ) =/= (/) ) ) -> u = ( ( u u. ( ( X X. X ) \ ( A X. A ) ) ) i^i ( A X. A ) ) ) |
| 158 | ineq1 | |- ( v = ( u u. ( ( X X. X ) \ ( A X. A ) ) ) -> ( v i^i ( A X. A ) ) = ( ( u u. ( ( X X. X ) \ ( A X. A ) ) ) i^i ( A X. A ) ) ) |
|
| 159 | 158 | rspceeqv | |- ( ( ( u u. ( ( X X. X ) \ ( A X. A ) ) ) e. ( metUnif ` D ) /\ u = ( ( u u. ( ( X X. X ) \ ( A X. A ) ) ) i^i ( A X. A ) ) ) -> E. v e. ( metUnif ` D ) u = ( v i^i ( A X. A ) ) ) |
| 160 | 149 157 159 | syl2anc | |- ( ( ( A =/= (/) /\ D e. ( PsMet ` X ) /\ A C_ X ) /\ ( u e. ~P ( A X. A ) /\ ( ran ( a e. RR+ |-> ( `' ( D |` ( A X. A ) ) " ( 0 [,) a ) ) ) i^i ~P u ) =/= (/) ) ) -> E. v e. ( metUnif ` D ) u = ( v i^i ( A X. A ) ) ) |
| 161 | 88 160 | impbida | |- ( ( A =/= (/) /\ D e. ( PsMet ` X ) /\ A C_ X ) -> ( E. v e. ( metUnif ` D ) u = ( v i^i ( A X. A ) ) <-> ( u e. ~P ( A X. A ) /\ ( ran ( a e. RR+ |-> ( `' ( D |` ( A X. A ) ) " ( 0 [,) a ) ) ) i^i ~P u ) =/= (/) ) ) ) |
| 162 | eqid | |- ( v e. ( metUnif ` D ) |-> ( v i^i ( A X. A ) ) ) = ( v e. ( metUnif ` D ) |-> ( v i^i ( A X. A ) ) ) |
|
| 163 | 162 | elrnmpt | |- ( u e. _V -> ( u e. ran ( v e. ( metUnif ` D ) |-> ( v i^i ( A X. A ) ) ) <-> E. v e. ( metUnif ` D ) u = ( v i^i ( A X. A ) ) ) ) |
| 164 | 163 | elv | |- ( u e. ran ( v e. ( metUnif ` D ) |-> ( v i^i ( A X. A ) ) ) <-> E. v e. ( metUnif ` D ) u = ( v i^i ( A X. A ) ) ) |
| 165 | pweq | |- ( v = u -> ~P v = ~P u ) |
|
| 166 | 165 | ineq2d | |- ( v = u -> ( ran ( a e. RR+ |-> ( `' ( D |` ( A X. A ) ) " ( 0 [,) a ) ) ) i^i ~P v ) = ( ran ( a e. RR+ |-> ( `' ( D |` ( A X. A ) ) " ( 0 [,) a ) ) ) i^i ~P u ) ) |
| 167 | 166 | neeq1d | |- ( v = u -> ( ( ran ( a e. RR+ |-> ( `' ( D |` ( A X. A ) ) " ( 0 [,) a ) ) ) i^i ~P v ) =/= (/) <-> ( ran ( a e. RR+ |-> ( `' ( D |` ( A X. A ) ) " ( 0 [,) a ) ) ) i^i ~P u ) =/= (/) ) ) |
| 168 | 167 | elrab | |- ( u e. { v e. ~P ( A X. A ) | ( ran ( a e. RR+ |-> ( `' ( D |` ( A X. A ) ) " ( 0 [,) a ) ) ) i^i ~P v ) =/= (/) } <-> ( u e. ~P ( A X. A ) /\ ( ran ( a e. RR+ |-> ( `' ( D |` ( A X. A ) ) " ( 0 [,) a ) ) ) i^i ~P u ) =/= (/) ) ) |
| 169 | 161 164 168 | 3bitr4g | |- ( ( A =/= (/) /\ D e. ( PsMet ` X ) /\ A C_ X ) -> ( u e. ran ( v e. ( metUnif ` D ) |-> ( v i^i ( A X. A ) ) ) <-> u e. { v e. ~P ( A X. A ) | ( ran ( a e. RR+ |-> ( `' ( D |` ( A X. A ) ) " ( 0 [,) a ) ) ) i^i ~P v ) =/= (/) } ) ) |
| 170 | 169 | eqrdv | |- ( ( A =/= (/) /\ D e. ( PsMet ` X ) /\ A C_ X ) -> ran ( v e. ( metUnif ` D ) |-> ( v i^i ( A X. A ) ) ) = { v e. ~P ( A X. A ) | ( ran ( a e. RR+ |-> ( `' ( D |` ( A X. A ) ) " ( 0 [,) a ) ) ) i^i ~P v ) =/= (/) } ) |
| 171 | 18 170 | eqtrd | |- ( ( A =/= (/) /\ D e. ( PsMet ` X ) /\ A C_ X ) -> ( ( metUnif ` D ) |`t ( A X. A ) ) = { v e. ~P ( A X. A ) | ( ran ( a e. RR+ |-> ( `' ( D |` ( A X. A ) ) " ( 0 [,) a ) ) ) i^i ~P v ) =/= (/) } ) |
| 172 | 11 13 171 | 3eqtr4rd | |- ( ( A =/= (/) /\ D e. ( PsMet ` X ) /\ A C_ X ) -> ( ( metUnif ` D ) |`t ( A X. A ) ) = ( metUnif ` ( D |` ( A X. A ) ) ) ) |