This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The filter base generated by a metric D . (Contributed by Thierry Arnoux, 26-Nov-2017) (Revised by Thierry Arnoux, 11-Feb-2018) (Proof shortened by Peter Mazsa, 2-Oct-2022)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | metust.1 | ⊢ 𝐹 = ran ( 𝑎 ∈ ℝ+ ↦ ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) ) | |
| Assertion | metustfbas | ⊢ ( ( 𝑋 ≠ ∅ ∧ 𝐷 ∈ ( PsMet ‘ 𝑋 ) ) → 𝐹 ∈ ( fBas ‘ ( 𝑋 × 𝑋 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | metust.1 | ⊢ 𝐹 = ran ( 𝑎 ∈ ℝ+ ↦ ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) ) | |
| 2 | 1 | metustel | ⊢ ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) → ( 𝑥 ∈ 𝐹 ↔ ∃ 𝑎 ∈ ℝ+ 𝑥 = ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) ) ) |
| 3 | simpr | ⊢ ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝑥 = ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) ) → 𝑥 = ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) ) | |
| 4 | cnvimass | ⊢ ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) ⊆ dom 𝐷 | |
| 5 | psmetf | ⊢ ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) → 𝐷 : ( 𝑋 × 𝑋 ) ⟶ ℝ* ) | |
| 6 | 5 | fdmd | ⊢ ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) → dom 𝐷 = ( 𝑋 × 𝑋 ) ) |
| 7 | 6 | adantr | ⊢ ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝑥 = ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) ) → dom 𝐷 = ( 𝑋 × 𝑋 ) ) |
| 8 | 4 7 | sseqtrid | ⊢ ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝑥 = ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) ) → ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) ⊆ ( 𝑋 × 𝑋 ) ) |
| 9 | 3 8 | eqsstrd | ⊢ ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝑥 = ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) ) → 𝑥 ⊆ ( 𝑋 × 𝑋 ) ) |
| 10 | 9 | ex | ⊢ ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) → ( 𝑥 = ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) → 𝑥 ⊆ ( 𝑋 × 𝑋 ) ) ) |
| 11 | 10 | rexlimdvw | ⊢ ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) → ( ∃ 𝑎 ∈ ℝ+ 𝑥 = ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) → 𝑥 ⊆ ( 𝑋 × 𝑋 ) ) ) |
| 12 | 2 11 | sylbid | ⊢ ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) → ( 𝑥 ∈ 𝐹 → 𝑥 ⊆ ( 𝑋 × 𝑋 ) ) ) |
| 13 | 12 | ralrimiv | ⊢ ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) → ∀ 𝑥 ∈ 𝐹 𝑥 ⊆ ( 𝑋 × 𝑋 ) ) |
| 14 | pwssb | ⊢ ( 𝐹 ⊆ 𝒫 ( 𝑋 × 𝑋 ) ↔ ∀ 𝑥 ∈ 𝐹 𝑥 ⊆ ( 𝑋 × 𝑋 ) ) | |
| 15 | 13 14 | sylibr | ⊢ ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) → 𝐹 ⊆ 𝒫 ( 𝑋 × 𝑋 ) ) |
| 16 | 15 | adantl | ⊢ ( ( 𝑋 ≠ ∅ ∧ 𝐷 ∈ ( PsMet ‘ 𝑋 ) ) → 𝐹 ⊆ 𝒫 ( 𝑋 × 𝑋 ) ) |
| 17 | cnvexg | ⊢ ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) → ◡ 𝐷 ∈ V ) | |
| 18 | imaexg | ⊢ ( ◡ 𝐷 ∈ V → ( ◡ 𝐷 “ ( 0 [,) 1 ) ) ∈ V ) | |
| 19 | elisset | ⊢ ( ( ◡ 𝐷 “ ( 0 [,) 1 ) ) ∈ V → ∃ 𝑥 𝑥 = ( ◡ 𝐷 “ ( 0 [,) 1 ) ) ) | |
| 20 | 1rp | ⊢ 1 ∈ ℝ+ | |
| 21 | oveq2 | ⊢ ( 𝑎 = 1 → ( 0 [,) 𝑎 ) = ( 0 [,) 1 ) ) | |
| 22 | 21 | imaeq2d | ⊢ ( 𝑎 = 1 → ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) = ( ◡ 𝐷 “ ( 0 [,) 1 ) ) ) |
| 23 | 22 | rspceeqv | ⊢ ( ( 1 ∈ ℝ+ ∧ 𝑥 = ( ◡ 𝐷 “ ( 0 [,) 1 ) ) ) → ∃ 𝑎 ∈ ℝ+ 𝑥 = ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) ) |
| 24 | 20 23 | mpan | ⊢ ( 𝑥 = ( ◡ 𝐷 “ ( 0 [,) 1 ) ) → ∃ 𝑎 ∈ ℝ+ 𝑥 = ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) ) |
| 25 | 24 | eximi | ⊢ ( ∃ 𝑥 𝑥 = ( ◡ 𝐷 “ ( 0 [,) 1 ) ) → ∃ 𝑥 ∃ 𝑎 ∈ ℝ+ 𝑥 = ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) ) |
| 26 | 17 18 19 25 | 4syl | ⊢ ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) → ∃ 𝑥 ∃ 𝑎 ∈ ℝ+ 𝑥 = ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) ) |
| 27 | 2 | exbidv | ⊢ ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) → ( ∃ 𝑥 𝑥 ∈ 𝐹 ↔ ∃ 𝑥 ∃ 𝑎 ∈ ℝ+ 𝑥 = ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) ) ) |
| 28 | 26 27 | mpbird | ⊢ ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) → ∃ 𝑥 𝑥 ∈ 𝐹 ) |
| 29 | 28 | adantl | ⊢ ( ( 𝑋 ≠ ∅ ∧ 𝐷 ∈ ( PsMet ‘ 𝑋 ) ) → ∃ 𝑥 𝑥 ∈ 𝐹 ) |
| 30 | n0 | ⊢ ( 𝐹 ≠ ∅ ↔ ∃ 𝑥 𝑥 ∈ 𝐹 ) | |
| 31 | 29 30 | sylibr | ⊢ ( ( 𝑋 ≠ ∅ ∧ 𝐷 ∈ ( PsMet ‘ 𝑋 ) ) → 𝐹 ≠ ∅ ) |
| 32 | 1 | metustid | ⊢ ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝑥 ∈ 𝐹 ) → ( I ↾ 𝑋 ) ⊆ 𝑥 ) |
| 33 | 32 | adantll | ⊢ ( ( ( 𝑋 ≠ ∅ ∧ 𝐷 ∈ ( PsMet ‘ 𝑋 ) ) ∧ 𝑥 ∈ 𝐹 ) → ( I ↾ 𝑋 ) ⊆ 𝑥 ) |
| 34 | n0 | ⊢ ( 𝑋 ≠ ∅ ↔ ∃ 𝑝 𝑝 ∈ 𝑋 ) | |
| 35 | 34 | biimpi | ⊢ ( 𝑋 ≠ ∅ → ∃ 𝑝 𝑝 ∈ 𝑋 ) |
| 36 | 35 | adantr | ⊢ ( ( 𝑋 ≠ ∅ ∧ 𝐷 ∈ ( PsMet ‘ 𝑋 ) ) → ∃ 𝑝 𝑝 ∈ 𝑋 ) |
| 37 | opelidres | ⊢ ( 𝑝 ∈ 𝑋 → ( 〈 𝑝 , 𝑝 〉 ∈ ( I ↾ 𝑋 ) ↔ 𝑝 ∈ 𝑋 ) ) | |
| 38 | 37 | ibir | ⊢ ( 𝑝 ∈ 𝑋 → 〈 𝑝 , 𝑝 〉 ∈ ( I ↾ 𝑋 ) ) |
| 39 | 38 | ne0d | ⊢ ( 𝑝 ∈ 𝑋 → ( I ↾ 𝑋 ) ≠ ∅ ) |
| 40 | 39 | exlimiv | ⊢ ( ∃ 𝑝 𝑝 ∈ 𝑋 → ( I ↾ 𝑋 ) ≠ ∅ ) |
| 41 | 36 40 | syl | ⊢ ( ( 𝑋 ≠ ∅ ∧ 𝐷 ∈ ( PsMet ‘ 𝑋 ) ) → ( I ↾ 𝑋 ) ≠ ∅ ) |
| 42 | 41 | adantr | ⊢ ( ( ( 𝑋 ≠ ∅ ∧ 𝐷 ∈ ( PsMet ‘ 𝑋 ) ) ∧ 𝑥 ∈ 𝐹 ) → ( I ↾ 𝑋 ) ≠ ∅ ) |
| 43 | ssn0 | ⊢ ( ( ( I ↾ 𝑋 ) ⊆ 𝑥 ∧ ( I ↾ 𝑋 ) ≠ ∅ ) → 𝑥 ≠ ∅ ) | |
| 44 | 33 42 43 | syl2anc | ⊢ ( ( ( 𝑋 ≠ ∅ ∧ 𝐷 ∈ ( PsMet ‘ 𝑋 ) ) ∧ 𝑥 ∈ 𝐹 ) → 𝑥 ≠ ∅ ) |
| 45 | 44 | nelrdva | ⊢ ( ( 𝑋 ≠ ∅ ∧ 𝐷 ∈ ( PsMet ‘ 𝑋 ) ) → ¬ ∅ ∈ 𝐹 ) |
| 46 | df-nel | ⊢ ( ∅ ∉ 𝐹 ↔ ¬ ∅ ∈ 𝐹 ) | |
| 47 | 45 46 | sylibr | ⊢ ( ( 𝑋 ≠ ∅ ∧ 𝐷 ∈ ( PsMet ‘ 𝑋 ) ) → ∅ ∉ 𝐹 ) |
| 48 | dfss2 | ⊢ ( 𝑥 ⊆ 𝑦 ↔ ( 𝑥 ∩ 𝑦 ) = 𝑥 ) | |
| 49 | 48 | biimpi | ⊢ ( 𝑥 ⊆ 𝑦 → ( 𝑥 ∩ 𝑦 ) = 𝑥 ) |
| 50 | 49 | adantl | ⊢ ( ( ( ( 𝑋 ≠ ∅ ∧ 𝐷 ∈ ( PsMet ‘ 𝑋 ) ) ∧ ( 𝑥 ∈ 𝐹 ∧ 𝑦 ∈ 𝐹 ) ) ∧ 𝑥 ⊆ 𝑦 ) → ( 𝑥 ∩ 𝑦 ) = 𝑥 ) |
| 51 | simplrl | ⊢ ( ( ( ( 𝑋 ≠ ∅ ∧ 𝐷 ∈ ( PsMet ‘ 𝑋 ) ) ∧ ( 𝑥 ∈ 𝐹 ∧ 𝑦 ∈ 𝐹 ) ) ∧ 𝑥 ⊆ 𝑦 ) → 𝑥 ∈ 𝐹 ) | |
| 52 | 50 51 | eqeltrd | ⊢ ( ( ( ( 𝑋 ≠ ∅ ∧ 𝐷 ∈ ( PsMet ‘ 𝑋 ) ) ∧ ( 𝑥 ∈ 𝐹 ∧ 𝑦 ∈ 𝐹 ) ) ∧ 𝑥 ⊆ 𝑦 ) → ( 𝑥 ∩ 𝑦 ) ∈ 𝐹 ) |
| 53 | sseqin2 | ⊢ ( 𝑦 ⊆ 𝑥 ↔ ( 𝑥 ∩ 𝑦 ) = 𝑦 ) | |
| 54 | 53 | biimpi | ⊢ ( 𝑦 ⊆ 𝑥 → ( 𝑥 ∩ 𝑦 ) = 𝑦 ) |
| 55 | 54 | adantl | ⊢ ( ( ( ( 𝑋 ≠ ∅ ∧ 𝐷 ∈ ( PsMet ‘ 𝑋 ) ) ∧ ( 𝑥 ∈ 𝐹 ∧ 𝑦 ∈ 𝐹 ) ) ∧ 𝑦 ⊆ 𝑥 ) → ( 𝑥 ∩ 𝑦 ) = 𝑦 ) |
| 56 | simplrr | ⊢ ( ( ( ( 𝑋 ≠ ∅ ∧ 𝐷 ∈ ( PsMet ‘ 𝑋 ) ) ∧ ( 𝑥 ∈ 𝐹 ∧ 𝑦 ∈ 𝐹 ) ) ∧ 𝑦 ⊆ 𝑥 ) → 𝑦 ∈ 𝐹 ) | |
| 57 | 55 56 | eqeltrd | ⊢ ( ( ( ( 𝑋 ≠ ∅ ∧ 𝐷 ∈ ( PsMet ‘ 𝑋 ) ) ∧ ( 𝑥 ∈ 𝐹 ∧ 𝑦 ∈ 𝐹 ) ) ∧ 𝑦 ⊆ 𝑥 ) → ( 𝑥 ∩ 𝑦 ) ∈ 𝐹 ) |
| 58 | simplr | ⊢ ( ( ( 𝑋 ≠ ∅ ∧ 𝐷 ∈ ( PsMet ‘ 𝑋 ) ) ∧ ( 𝑥 ∈ 𝐹 ∧ 𝑦 ∈ 𝐹 ) ) → 𝐷 ∈ ( PsMet ‘ 𝑋 ) ) | |
| 59 | simprl | ⊢ ( ( ( 𝑋 ≠ ∅ ∧ 𝐷 ∈ ( PsMet ‘ 𝑋 ) ) ∧ ( 𝑥 ∈ 𝐹 ∧ 𝑦 ∈ 𝐹 ) ) → 𝑥 ∈ 𝐹 ) | |
| 60 | simprr | ⊢ ( ( ( 𝑋 ≠ ∅ ∧ 𝐷 ∈ ( PsMet ‘ 𝑋 ) ) ∧ ( 𝑥 ∈ 𝐹 ∧ 𝑦 ∈ 𝐹 ) ) → 𝑦 ∈ 𝐹 ) | |
| 61 | 1 | metustto | ⊢ ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝑥 ∈ 𝐹 ∧ 𝑦 ∈ 𝐹 ) → ( 𝑥 ⊆ 𝑦 ∨ 𝑦 ⊆ 𝑥 ) ) |
| 62 | 58 59 60 61 | syl3anc | ⊢ ( ( ( 𝑋 ≠ ∅ ∧ 𝐷 ∈ ( PsMet ‘ 𝑋 ) ) ∧ ( 𝑥 ∈ 𝐹 ∧ 𝑦 ∈ 𝐹 ) ) → ( 𝑥 ⊆ 𝑦 ∨ 𝑦 ⊆ 𝑥 ) ) |
| 63 | 52 57 62 | mpjaodan | ⊢ ( ( ( 𝑋 ≠ ∅ ∧ 𝐷 ∈ ( PsMet ‘ 𝑋 ) ) ∧ ( 𝑥 ∈ 𝐹 ∧ 𝑦 ∈ 𝐹 ) ) → ( 𝑥 ∩ 𝑦 ) ∈ 𝐹 ) |
| 64 | ssidd | ⊢ ( ( ( 𝑋 ≠ ∅ ∧ 𝐷 ∈ ( PsMet ‘ 𝑋 ) ) ∧ ( 𝑥 ∈ 𝐹 ∧ 𝑦 ∈ 𝐹 ) ) → ( 𝑥 ∩ 𝑦 ) ⊆ ( 𝑥 ∩ 𝑦 ) ) | |
| 65 | sseq1 | ⊢ ( 𝑧 = ( 𝑥 ∩ 𝑦 ) → ( 𝑧 ⊆ ( 𝑥 ∩ 𝑦 ) ↔ ( 𝑥 ∩ 𝑦 ) ⊆ ( 𝑥 ∩ 𝑦 ) ) ) | |
| 66 | 65 | rspcev | ⊢ ( ( ( 𝑥 ∩ 𝑦 ) ∈ 𝐹 ∧ ( 𝑥 ∩ 𝑦 ) ⊆ ( 𝑥 ∩ 𝑦 ) ) → ∃ 𝑧 ∈ 𝐹 𝑧 ⊆ ( 𝑥 ∩ 𝑦 ) ) |
| 67 | 63 64 66 | syl2anc | ⊢ ( ( ( 𝑋 ≠ ∅ ∧ 𝐷 ∈ ( PsMet ‘ 𝑋 ) ) ∧ ( 𝑥 ∈ 𝐹 ∧ 𝑦 ∈ 𝐹 ) ) → ∃ 𝑧 ∈ 𝐹 𝑧 ⊆ ( 𝑥 ∩ 𝑦 ) ) |
| 68 | 67 | ralrimivva | ⊢ ( ( 𝑋 ≠ ∅ ∧ 𝐷 ∈ ( PsMet ‘ 𝑋 ) ) → ∀ 𝑥 ∈ 𝐹 ∀ 𝑦 ∈ 𝐹 ∃ 𝑧 ∈ 𝐹 𝑧 ⊆ ( 𝑥 ∩ 𝑦 ) ) |
| 69 | 31 47 68 | 3jca | ⊢ ( ( 𝑋 ≠ ∅ ∧ 𝐷 ∈ ( PsMet ‘ 𝑋 ) ) → ( 𝐹 ≠ ∅ ∧ ∅ ∉ 𝐹 ∧ ∀ 𝑥 ∈ 𝐹 ∀ 𝑦 ∈ 𝐹 ∃ 𝑧 ∈ 𝐹 𝑧 ⊆ ( 𝑥 ∩ 𝑦 ) ) ) |
| 70 | elfvex | ⊢ ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) → 𝑋 ∈ V ) | |
| 71 | 70 | adantl | ⊢ ( ( 𝑋 ≠ ∅ ∧ 𝐷 ∈ ( PsMet ‘ 𝑋 ) ) → 𝑋 ∈ V ) |
| 72 | 71 71 | xpexd | ⊢ ( ( 𝑋 ≠ ∅ ∧ 𝐷 ∈ ( PsMet ‘ 𝑋 ) ) → ( 𝑋 × 𝑋 ) ∈ V ) |
| 73 | isfbas2 | ⊢ ( ( 𝑋 × 𝑋 ) ∈ V → ( 𝐹 ∈ ( fBas ‘ ( 𝑋 × 𝑋 ) ) ↔ ( 𝐹 ⊆ 𝒫 ( 𝑋 × 𝑋 ) ∧ ( 𝐹 ≠ ∅ ∧ ∅ ∉ 𝐹 ∧ ∀ 𝑥 ∈ 𝐹 ∀ 𝑦 ∈ 𝐹 ∃ 𝑧 ∈ 𝐹 𝑧 ⊆ ( 𝑥 ∩ 𝑦 ) ) ) ) ) | |
| 74 | 72 73 | syl | ⊢ ( ( 𝑋 ≠ ∅ ∧ 𝐷 ∈ ( PsMet ‘ 𝑋 ) ) → ( 𝐹 ∈ ( fBas ‘ ( 𝑋 × 𝑋 ) ) ↔ ( 𝐹 ⊆ 𝒫 ( 𝑋 × 𝑋 ) ∧ ( 𝐹 ≠ ∅ ∧ ∅ ∉ 𝐹 ∧ ∀ 𝑥 ∈ 𝐹 ∀ 𝑦 ∈ 𝐹 ∃ 𝑧 ∈ 𝐹 𝑧 ⊆ ( 𝑥 ∩ 𝑦 ) ) ) ) ) |
| 75 | 16 69 74 | mpbir2and | ⊢ ( ( 𝑋 ≠ ∅ ∧ 𝐷 ∈ ( PsMet ‘ 𝑋 ) ) → 𝐹 ∈ ( fBas ‘ ( 𝑋 × 𝑋 ) ) ) |