This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The subspace topology induced by the topology J on the set A . (Contributed by FL, 20-Sep-2010) (Revised by Mario Carneiro, 1-May-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | restval | ⊢ ( ( 𝐽 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊 ) → ( 𝐽 ↾t 𝐴 ) = ran ( 𝑥 ∈ 𝐽 ↦ ( 𝑥 ∩ 𝐴 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elex | ⊢ ( 𝐽 ∈ 𝑉 → 𝐽 ∈ V ) | |
| 2 | elex | ⊢ ( 𝐴 ∈ 𝑊 → 𝐴 ∈ V ) | |
| 3 | mptexg | ⊢ ( 𝐽 ∈ V → ( 𝑥 ∈ 𝐽 ↦ ( 𝑥 ∩ 𝐴 ) ) ∈ V ) | |
| 4 | rnexg | ⊢ ( ( 𝑥 ∈ 𝐽 ↦ ( 𝑥 ∩ 𝐴 ) ) ∈ V → ran ( 𝑥 ∈ 𝐽 ↦ ( 𝑥 ∩ 𝐴 ) ) ∈ V ) | |
| 5 | 3 4 | syl | ⊢ ( 𝐽 ∈ V → ran ( 𝑥 ∈ 𝐽 ↦ ( 𝑥 ∩ 𝐴 ) ) ∈ V ) |
| 6 | 5 | adantr | ⊢ ( ( 𝐽 ∈ V ∧ 𝐴 ∈ V ) → ran ( 𝑥 ∈ 𝐽 ↦ ( 𝑥 ∩ 𝐴 ) ) ∈ V ) |
| 7 | simpl | ⊢ ( ( 𝑗 = 𝐽 ∧ 𝑦 = 𝐴 ) → 𝑗 = 𝐽 ) | |
| 8 | simpr | ⊢ ( ( 𝑗 = 𝐽 ∧ 𝑦 = 𝐴 ) → 𝑦 = 𝐴 ) | |
| 9 | 8 | ineq2d | ⊢ ( ( 𝑗 = 𝐽 ∧ 𝑦 = 𝐴 ) → ( 𝑥 ∩ 𝑦 ) = ( 𝑥 ∩ 𝐴 ) ) |
| 10 | 7 9 | mpteq12dv | ⊢ ( ( 𝑗 = 𝐽 ∧ 𝑦 = 𝐴 ) → ( 𝑥 ∈ 𝑗 ↦ ( 𝑥 ∩ 𝑦 ) ) = ( 𝑥 ∈ 𝐽 ↦ ( 𝑥 ∩ 𝐴 ) ) ) |
| 11 | 10 | rneqd | ⊢ ( ( 𝑗 = 𝐽 ∧ 𝑦 = 𝐴 ) → ran ( 𝑥 ∈ 𝑗 ↦ ( 𝑥 ∩ 𝑦 ) ) = ran ( 𝑥 ∈ 𝐽 ↦ ( 𝑥 ∩ 𝐴 ) ) ) |
| 12 | df-rest | ⊢ ↾t = ( 𝑗 ∈ V , 𝑦 ∈ V ↦ ran ( 𝑥 ∈ 𝑗 ↦ ( 𝑥 ∩ 𝑦 ) ) ) | |
| 13 | 11 12 | ovmpoga | ⊢ ( ( 𝐽 ∈ V ∧ 𝐴 ∈ V ∧ ran ( 𝑥 ∈ 𝐽 ↦ ( 𝑥 ∩ 𝐴 ) ) ∈ V ) → ( 𝐽 ↾t 𝐴 ) = ran ( 𝑥 ∈ 𝐽 ↦ ( 𝑥 ∩ 𝐴 ) ) ) |
| 14 | 6 13 | mpd3an3 | ⊢ ( ( 𝐽 ∈ V ∧ 𝐴 ∈ V ) → ( 𝐽 ↾t 𝐴 ) = ran ( 𝑥 ∈ 𝐽 ↦ ( 𝑥 ∩ 𝐴 ) ) ) |
| 15 | 1 2 14 | syl2an | ⊢ ( ( 𝐽 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊 ) → ( 𝐽 ↾t 𝐴 ) = ran ( 𝑥 ∈ 𝐽 ↦ ( 𝑥 ∩ 𝐴 ) ) ) |