This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If A is a saturated open or closed set (where saturated means that A = (`' F " U ) for some U ), then the restriction of the quotient map F to A ` is a quotient map. (Contributed by Mario Carneiro, 24-Mar-2015) (Revised by Mario Carneiro, 22-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | qtoprest.2 | ⊢ ( 𝜑 → 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) | |
| qtoprest.3 | ⊢ ( 𝜑 → 𝐹 : 𝑋 –onto→ 𝑌 ) | ||
| qtoprest.4 | ⊢ ( 𝜑 → 𝑈 ⊆ 𝑌 ) | ||
| qtoprest.5 | ⊢ ( 𝜑 → 𝐴 = ( ◡ 𝐹 “ 𝑈 ) ) | ||
| qtoprest.6 | ⊢ ( 𝜑 → ( 𝐴 ∈ 𝐽 ∨ 𝐴 ∈ ( Clsd ‘ 𝐽 ) ) ) | ||
| Assertion | qtoprest | ⊢ ( 𝜑 → ( ( 𝐽 qTop 𝐹 ) ↾t 𝑈 ) = ( ( 𝐽 ↾t 𝐴 ) qTop ( 𝐹 ↾ 𝐴 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | qtoprest.2 | ⊢ ( 𝜑 → 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) | |
| 2 | qtoprest.3 | ⊢ ( 𝜑 → 𝐹 : 𝑋 –onto→ 𝑌 ) | |
| 3 | qtoprest.4 | ⊢ ( 𝜑 → 𝑈 ⊆ 𝑌 ) | |
| 4 | qtoprest.5 | ⊢ ( 𝜑 → 𝐴 = ( ◡ 𝐹 “ 𝑈 ) ) | |
| 5 | qtoprest.6 | ⊢ ( 𝜑 → ( 𝐴 ∈ 𝐽 ∨ 𝐴 ∈ ( Clsd ‘ 𝐽 ) ) ) | |
| 6 | fofn | ⊢ ( 𝐹 : 𝑋 –onto→ 𝑌 → 𝐹 Fn 𝑋 ) | |
| 7 | 2 6 | syl | ⊢ ( 𝜑 → 𝐹 Fn 𝑋 ) |
| 8 | qtopid | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐹 Fn 𝑋 ) → 𝐹 ∈ ( 𝐽 Cn ( 𝐽 qTop 𝐹 ) ) ) | |
| 9 | 1 7 8 | syl2anc | ⊢ ( 𝜑 → 𝐹 ∈ ( 𝐽 Cn ( 𝐽 qTop 𝐹 ) ) ) |
| 10 | cnvimass | ⊢ ( ◡ 𝐹 “ 𝑈 ) ⊆ dom 𝐹 | |
| 11 | 7 | fndmd | ⊢ ( 𝜑 → dom 𝐹 = 𝑋 ) |
| 12 | 10 11 | sseqtrid | ⊢ ( 𝜑 → ( ◡ 𝐹 “ 𝑈 ) ⊆ 𝑋 ) |
| 13 | 4 12 | eqsstrd | ⊢ ( 𝜑 → 𝐴 ⊆ 𝑋 ) |
| 14 | toponuni | ⊢ ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) → 𝑋 = ∪ 𝐽 ) | |
| 15 | 1 14 | syl | ⊢ ( 𝜑 → 𝑋 = ∪ 𝐽 ) |
| 16 | 13 15 | sseqtrd | ⊢ ( 𝜑 → 𝐴 ⊆ ∪ 𝐽 ) |
| 17 | eqid | ⊢ ∪ 𝐽 = ∪ 𝐽 | |
| 18 | 17 | cnrest | ⊢ ( ( 𝐹 ∈ ( 𝐽 Cn ( 𝐽 qTop 𝐹 ) ) ∧ 𝐴 ⊆ ∪ 𝐽 ) → ( 𝐹 ↾ 𝐴 ) ∈ ( ( 𝐽 ↾t 𝐴 ) Cn ( 𝐽 qTop 𝐹 ) ) ) |
| 19 | 9 16 18 | syl2anc | ⊢ ( 𝜑 → ( 𝐹 ↾ 𝐴 ) ∈ ( ( 𝐽 ↾t 𝐴 ) Cn ( 𝐽 qTop 𝐹 ) ) ) |
| 20 | qtoptopon | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐹 : 𝑋 –onto→ 𝑌 ) → ( 𝐽 qTop 𝐹 ) ∈ ( TopOn ‘ 𝑌 ) ) | |
| 21 | 1 2 20 | syl2anc | ⊢ ( 𝜑 → ( 𝐽 qTop 𝐹 ) ∈ ( TopOn ‘ 𝑌 ) ) |
| 22 | df-ima | ⊢ ( 𝐹 “ 𝐴 ) = ran ( 𝐹 ↾ 𝐴 ) | |
| 23 | 4 | imaeq2d | ⊢ ( 𝜑 → ( 𝐹 “ 𝐴 ) = ( 𝐹 “ ( ◡ 𝐹 “ 𝑈 ) ) ) |
| 24 | foimacnv | ⊢ ( ( 𝐹 : 𝑋 –onto→ 𝑌 ∧ 𝑈 ⊆ 𝑌 ) → ( 𝐹 “ ( ◡ 𝐹 “ 𝑈 ) ) = 𝑈 ) | |
| 25 | 2 3 24 | syl2anc | ⊢ ( 𝜑 → ( 𝐹 “ ( ◡ 𝐹 “ 𝑈 ) ) = 𝑈 ) |
| 26 | 23 25 | eqtrd | ⊢ ( 𝜑 → ( 𝐹 “ 𝐴 ) = 𝑈 ) |
| 27 | 22 26 | eqtr3id | ⊢ ( 𝜑 → ran ( 𝐹 ↾ 𝐴 ) = 𝑈 ) |
| 28 | eqimss | ⊢ ( ran ( 𝐹 ↾ 𝐴 ) = 𝑈 → ran ( 𝐹 ↾ 𝐴 ) ⊆ 𝑈 ) | |
| 29 | 27 28 | syl | ⊢ ( 𝜑 → ran ( 𝐹 ↾ 𝐴 ) ⊆ 𝑈 ) |
| 30 | cnrest2 | ⊢ ( ( ( 𝐽 qTop 𝐹 ) ∈ ( TopOn ‘ 𝑌 ) ∧ ran ( 𝐹 ↾ 𝐴 ) ⊆ 𝑈 ∧ 𝑈 ⊆ 𝑌 ) → ( ( 𝐹 ↾ 𝐴 ) ∈ ( ( 𝐽 ↾t 𝐴 ) Cn ( 𝐽 qTop 𝐹 ) ) ↔ ( 𝐹 ↾ 𝐴 ) ∈ ( ( 𝐽 ↾t 𝐴 ) Cn ( ( 𝐽 qTop 𝐹 ) ↾t 𝑈 ) ) ) ) | |
| 31 | 21 29 3 30 | syl3anc | ⊢ ( 𝜑 → ( ( 𝐹 ↾ 𝐴 ) ∈ ( ( 𝐽 ↾t 𝐴 ) Cn ( 𝐽 qTop 𝐹 ) ) ↔ ( 𝐹 ↾ 𝐴 ) ∈ ( ( 𝐽 ↾t 𝐴 ) Cn ( ( 𝐽 qTop 𝐹 ) ↾t 𝑈 ) ) ) ) |
| 32 | 19 31 | mpbid | ⊢ ( 𝜑 → ( 𝐹 ↾ 𝐴 ) ∈ ( ( 𝐽 ↾t 𝐴 ) Cn ( ( 𝐽 qTop 𝐹 ) ↾t 𝑈 ) ) ) |
| 33 | resttopon | ⊢ ( ( ( 𝐽 qTop 𝐹 ) ∈ ( TopOn ‘ 𝑌 ) ∧ 𝑈 ⊆ 𝑌 ) → ( ( 𝐽 qTop 𝐹 ) ↾t 𝑈 ) ∈ ( TopOn ‘ 𝑈 ) ) | |
| 34 | 21 3 33 | syl2anc | ⊢ ( 𝜑 → ( ( 𝐽 qTop 𝐹 ) ↾t 𝑈 ) ∈ ( TopOn ‘ 𝑈 ) ) |
| 35 | qtopss | ⊢ ( ( ( 𝐹 ↾ 𝐴 ) ∈ ( ( 𝐽 ↾t 𝐴 ) Cn ( ( 𝐽 qTop 𝐹 ) ↾t 𝑈 ) ) ∧ ( ( 𝐽 qTop 𝐹 ) ↾t 𝑈 ) ∈ ( TopOn ‘ 𝑈 ) ∧ ran ( 𝐹 ↾ 𝐴 ) = 𝑈 ) → ( ( 𝐽 qTop 𝐹 ) ↾t 𝑈 ) ⊆ ( ( 𝐽 ↾t 𝐴 ) qTop ( 𝐹 ↾ 𝐴 ) ) ) | |
| 36 | 32 34 27 35 | syl3anc | ⊢ ( 𝜑 → ( ( 𝐽 qTop 𝐹 ) ↾t 𝑈 ) ⊆ ( ( 𝐽 ↾t 𝐴 ) qTop ( 𝐹 ↾ 𝐴 ) ) ) |
| 37 | resttopon | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐴 ⊆ 𝑋 ) → ( 𝐽 ↾t 𝐴 ) ∈ ( TopOn ‘ 𝐴 ) ) | |
| 38 | 1 13 37 | syl2anc | ⊢ ( 𝜑 → ( 𝐽 ↾t 𝐴 ) ∈ ( TopOn ‘ 𝐴 ) ) |
| 39 | fnfun | ⊢ ( 𝐹 Fn 𝑋 → Fun 𝐹 ) | |
| 40 | 7 39 | syl | ⊢ ( 𝜑 → Fun 𝐹 ) |
| 41 | 13 11 | sseqtrrd | ⊢ ( 𝜑 → 𝐴 ⊆ dom 𝐹 ) |
| 42 | fores | ⊢ ( ( Fun 𝐹 ∧ 𝐴 ⊆ dom 𝐹 ) → ( 𝐹 ↾ 𝐴 ) : 𝐴 –onto→ ( 𝐹 “ 𝐴 ) ) | |
| 43 | 40 41 42 | syl2anc | ⊢ ( 𝜑 → ( 𝐹 ↾ 𝐴 ) : 𝐴 –onto→ ( 𝐹 “ 𝐴 ) ) |
| 44 | foeq3 | ⊢ ( ( 𝐹 “ 𝐴 ) = 𝑈 → ( ( 𝐹 ↾ 𝐴 ) : 𝐴 –onto→ ( 𝐹 “ 𝐴 ) ↔ ( 𝐹 ↾ 𝐴 ) : 𝐴 –onto→ 𝑈 ) ) | |
| 45 | 26 44 | syl | ⊢ ( 𝜑 → ( ( 𝐹 ↾ 𝐴 ) : 𝐴 –onto→ ( 𝐹 “ 𝐴 ) ↔ ( 𝐹 ↾ 𝐴 ) : 𝐴 –onto→ 𝑈 ) ) |
| 46 | 43 45 | mpbid | ⊢ ( 𝜑 → ( 𝐹 ↾ 𝐴 ) : 𝐴 –onto→ 𝑈 ) |
| 47 | elqtop3 | ⊢ ( ( ( 𝐽 ↾t 𝐴 ) ∈ ( TopOn ‘ 𝐴 ) ∧ ( 𝐹 ↾ 𝐴 ) : 𝐴 –onto→ 𝑈 ) → ( 𝑥 ∈ ( ( 𝐽 ↾t 𝐴 ) qTop ( 𝐹 ↾ 𝐴 ) ) ↔ ( 𝑥 ⊆ 𝑈 ∧ ( ◡ ( 𝐹 ↾ 𝐴 ) “ 𝑥 ) ∈ ( 𝐽 ↾t 𝐴 ) ) ) ) | |
| 48 | 38 46 47 | syl2anc | ⊢ ( 𝜑 → ( 𝑥 ∈ ( ( 𝐽 ↾t 𝐴 ) qTop ( 𝐹 ↾ 𝐴 ) ) ↔ ( 𝑥 ⊆ 𝑈 ∧ ( ◡ ( 𝐹 ↾ 𝐴 ) “ 𝑥 ) ∈ ( 𝐽 ↾t 𝐴 ) ) ) ) |
| 49 | cnvresima | ⊢ ( ◡ ( 𝐹 ↾ 𝐴 ) “ 𝑥 ) = ( ( ◡ 𝐹 “ 𝑥 ) ∩ 𝐴 ) | |
| 50 | imass2 | ⊢ ( 𝑥 ⊆ 𝑈 → ( ◡ 𝐹 “ 𝑥 ) ⊆ ( ◡ 𝐹 “ 𝑈 ) ) | |
| 51 | 50 | adantl | ⊢ ( ( 𝜑 ∧ 𝑥 ⊆ 𝑈 ) → ( ◡ 𝐹 “ 𝑥 ) ⊆ ( ◡ 𝐹 “ 𝑈 ) ) |
| 52 | 4 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ⊆ 𝑈 ) → 𝐴 = ( ◡ 𝐹 “ 𝑈 ) ) |
| 53 | 51 52 | sseqtrrd | ⊢ ( ( 𝜑 ∧ 𝑥 ⊆ 𝑈 ) → ( ◡ 𝐹 “ 𝑥 ) ⊆ 𝐴 ) |
| 54 | dfss2 | ⊢ ( ( ◡ 𝐹 “ 𝑥 ) ⊆ 𝐴 ↔ ( ( ◡ 𝐹 “ 𝑥 ) ∩ 𝐴 ) = ( ◡ 𝐹 “ 𝑥 ) ) | |
| 55 | 53 54 | sylib | ⊢ ( ( 𝜑 ∧ 𝑥 ⊆ 𝑈 ) → ( ( ◡ 𝐹 “ 𝑥 ) ∩ 𝐴 ) = ( ◡ 𝐹 “ 𝑥 ) ) |
| 56 | 49 55 | eqtrid | ⊢ ( ( 𝜑 ∧ 𝑥 ⊆ 𝑈 ) → ( ◡ ( 𝐹 ↾ 𝐴 ) “ 𝑥 ) = ( ◡ 𝐹 “ 𝑥 ) ) |
| 57 | 56 | eleq1d | ⊢ ( ( 𝜑 ∧ 𝑥 ⊆ 𝑈 ) → ( ( ◡ ( 𝐹 ↾ 𝐴 ) “ 𝑥 ) ∈ ( 𝐽 ↾t 𝐴 ) ↔ ( ◡ 𝐹 “ 𝑥 ) ∈ ( 𝐽 ↾t 𝐴 ) ) ) |
| 58 | simplrl | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ⊆ 𝑈 ∧ ( ◡ 𝐹 “ 𝑥 ) ∈ ( 𝐽 ↾t 𝐴 ) ) ) ∧ 𝐴 ∈ 𝐽 ) → 𝑥 ⊆ 𝑈 ) | |
| 59 | dfss2 | ⊢ ( 𝑥 ⊆ 𝑈 ↔ ( 𝑥 ∩ 𝑈 ) = 𝑥 ) | |
| 60 | 58 59 | sylib | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ⊆ 𝑈 ∧ ( ◡ 𝐹 “ 𝑥 ) ∈ ( 𝐽 ↾t 𝐴 ) ) ) ∧ 𝐴 ∈ 𝐽 ) → ( 𝑥 ∩ 𝑈 ) = 𝑥 ) |
| 61 | topontop | ⊢ ( ( 𝐽 qTop 𝐹 ) ∈ ( TopOn ‘ 𝑌 ) → ( 𝐽 qTop 𝐹 ) ∈ Top ) | |
| 62 | 21 61 | syl | ⊢ ( 𝜑 → ( 𝐽 qTop 𝐹 ) ∈ Top ) |
| 63 | 62 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ⊆ 𝑈 ∧ ( ◡ 𝐹 “ 𝑥 ) ∈ ( 𝐽 ↾t 𝐴 ) ) ) ∧ 𝐴 ∈ 𝐽 ) → ( 𝐽 qTop 𝐹 ) ∈ Top ) |
| 64 | toponmax | ⊢ ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) → 𝑋 ∈ 𝐽 ) | |
| 65 | 1 64 | syl | ⊢ ( 𝜑 → 𝑋 ∈ 𝐽 ) |
| 66 | focdmex | ⊢ ( 𝑋 ∈ 𝐽 → ( 𝐹 : 𝑋 –onto→ 𝑌 → 𝑌 ∈ V ) ) | |
| 67 | 65 2 66 | sylc | ⊢ ( 𝜑 → 𝑌 ∈ V ) |
| 68 | 67 3 | ssexd | ⊢ ( 𝜑 → 𝑈 ∈ V ) |
| 69 | 68 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ⊆ 𝑈 ∧ ( ◡ 𝐹 “ 𝑥 ) ∈ ( 𝐽 ↾t 𝐴 ) ) ) ∧ 𝐴 ∈ 𝐽 ) → 𝑈 ∈ V ) |
| 70 | 3 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ⊆ 𝑈 ∧ ( ◡ 𝐹 “ 𝑥 ) ∈ ( 𝐽 ↾t 𝐴 ) ) ) ∧ 𝐴 ∈ 𝐽 ) → 𝑈 ⊆ 𝑌 ) |
| 71 | 58 70 | sstrd | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ⊆ 𝑈 ∧ ( ◡ 𝐹 “ 𝑥 ) ∈ ( 𝐽 ↾t 𝐴 ) ) ) ∧ 𝐴 ∈ 𝐽 ) → 𝑥 ⊆ 𝑌 ) |
| 72 | topontop | ⊢ ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) → 𝐽 ∈ Top ) | |
| 73 | 1 72 | syl | ⊢ ( 𝜑 → 𝐽 ∈ Top ) |
| 74 | restopn2 | ⊢ ( ( 𝐽 ∈ Top ∧ 𝐴 ∈ 𝐽 ) → ( ( ◡ 𝐹 “ 𝑥 ) ∈ ( 𝐽 ↾t 𝐴 ) ↔ ( ( ◡ 𝐹 “ 𝑥 ) ∈ 𝐽 ∧ ( ◡ 𝐹 “ 𝑥 ) ⊆ 𝐴 ) ) ) | |
| 75 | 73 74 | sylan | ⊢ ( ( 𝜑 ∧ 𝐴 ∈ 𝐽 ) → ( ( ◡ 𝐹 “ 𝑥 ) ∈ ( 𝐽 ↾t 𝐴 ) ↔ ( ( ◡ 𝐹 “ 𝑥 ) ∈ 𝐽 ∧ ( ◡ 𝐹 “ 𝑥 ) ⊆ 𝐴 ) ) ) |
| 76 | 75 | simprbda | ⊢ ( ( ( 𝜑 ∧ 𝐴 ∈ 𝐽 ) ∧ ( ◡ 𝐹 “ 𝑥 ) ∈ ( 𝐽 ↾t 𝐴 ) ) → ( ◡ 𝐹 “ 𝑥 ) ∈ 𝐽 ) |
| 77 | 76 | adantrl | ⊢ ( ( ( 𝜑 ∧ 𝐴 ∈ 𝐽 ) ∧ ( 𝑥 ⊆ 𝑈 ∧ ( ◡ 𝐹 “ 𝑥 ) ∈ ( 𝐽 ↾t 𝐴 ) ) ) → ( ◡ 𝐹 “ 𝑥 ) ∈ 𝐽 ) |
| 78 | 77 | an32s | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ⊆ 𝑈 ∧ ( ◡ 𝐹 “ 𝑥 ) ∈ ( 𝐽 ↾t 𝐴 ) ) ) ∧ 𝐴 ∈ 𝐽 ) → ( ◡ 𝐹 “ 𝑥 ) ∈ 𝐽 ) |
| 79 | elqtop3 | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐹 : 𝑋 –onto→ 𝑌 ) → ( 𝑥 ∈ ( 𝐽 qTop 𝐹 ) ↔ ( 𝑥 ⊆ 𝑌 ∧ ( ◡ 𝐹 “ 𝑥 ) ∈ 𝐽 ) ) ) | |
| 80 | 1 2 79 | syl2anc | ⊢ ( 𝜑 → ( 𝑥 ∈ ( 𝐽 qTop 𝐹 ) ↔ ( 𝑥 ⊆ 𝑌 ∧ ( ◡ 𝐹 “ 𝑥 ) ∈ 𝐽 ) ) ) |
| 81 | 80 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ⊆ 𝑈 ∧ ( ◡ 𝐹 “ 𝑥 ) ∈ ( 𝐽 ↾t 𝐴 ) ) ) ∧ 𝐴 ∈ 𝐽 ) → ( 𝑥 ∈ ( 𝐽 qTop 𝐹 ) ↔ ( 𝑥 ⊆ 𝑌 ∧ ( ◡ 𝐹 “ 𝑥 ) ∈ 𝐽 ) ) ) |
| 82 | 71 78 81 | mpbir2and | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ⊆ 𝑈 ∧ ( ◡ 𝐹 “ 𝑥 ) ∈ ( 𝐽 ↾t 𝐴 ) ) ) ∧ 𝐴 ∈ 𝐽 ) → 𝑥 ∈ ( 𝐽 qTop 𝐹 ) ) |
| 83 | elrestr | ⊢ ( ( ( 𝐽 qTop 𝐹 ) ∈ Top ∧ 𝑈 ∈ V ∧ 𝑥 ∈ ( 𝐽 qTop 𝐹 ) ) → ( 𝑥 ∩ 𝑈 ) ∈ ( ( 𝐽 qTop 𝐹 ) ↾t 𝑈 ) ) | |
| 84 | 63 69 82 83 | syl3anc | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ⊆ 𝑈 ∧ ( ◡ 𝐹 “ 𝑥 ) ∈ ( 𝐽 ↾t 𝐴 ) ) ) ∧ 𝐴 ∈ 𝐽 ) → ( 𝑥 ∩ 𝑈 ) ∈ ( ( 𝐽 qTop 𝐹 ) ↾t 𝑈 ) ) |
| 85 | 60 84 | eqeltrrd | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ⊆ 𝑈 ∧ ( ◡ 𝐹 “ 𝑥 ) ∈ ( 𝐽 ↾t 𝐴 ) ) ) ∧ 𝐴 ∈ 𝐽 ) → 𝑥 ∈ ( ( 𝐽 qTop 𝐹 ) ↾t 𝑈 ) ) |
| 86 | 34 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ⊆ 𝑈 ∧ ( ◡ 𝐹 “ 𝑥 ) ∈ ( 𝐽 ↾t 𝐴 ) ) ) ∧ 𝐴 ∈ ( Clsd ‘ 𝐽 ) ) → ( ( 𝐽 qTop 𝐹 ) ↾t 𝑈 ) ∈ ( TopOn ‘ 𝑈 ) ) |
| 87 | toponuni | ⊢ ( ( ( 𝐽 qTop 𝐹 ) ↾t 𝑈 ) ∈ ( TopOn ‘ 𝑈 ) → 𝑈 = ∪ ( ( 𝐽 qTop 𝐹 ) ↾t 𝑈 ) ) | |
| 88 | 86 87 | syl | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ⊆ 𝑈 ∧ ( ◡ 𝐹 “ 𝑥 ) ∈ ( 𝐽 ↾t 𝐴 ) ) ) ∧ 𝐴 ∈ ( Clsd ‘ 𝐽 ) ) → 𝑈 = ∪ ( ( 𝐽 qTop 𝐹 ) ↾t 𝑈 ) ) |
| 89 | 88 | difeq1d | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ⊆ 𝑈 ∧ ( ◡ 𝐹 “ 𝑥 ) ∈ ( 𝐽 ↾t 𝐴 ) ) ) ∧ 𝐴 ∈ ( Clsd ‘ 𝐽 ) ) → ( 𝑈 ∖ 𝑥 ) = ( ∪ ( ( 𝐽 qTop 𝐹 ) ↾t 𝑈 ) ∖ 𝑥 ) ) |
| 90 | 3 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ⊆ 𝑈 ∧ ( ◡ 𝐹 “ 𝑥 ) ∈ ( 𝐽 ↾t 𝐴 ) ) ) ∧ 𝐴 ∈ ( Clsd ‘ 𝐽 ) ) → 𝑈 ⊆ 𝑌 ) |
| 91 | 21 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ⊆ 𝑈 ∧ ( ◡ 𝐹 “ 𝑥 ) ∈ ( 𝐽 ↾t 𝐴 ) ) ) ∧ 𝐴 ∈ ( Clsd ‘ 𝐽 ) ) → ( 𝐽 qTop 𝐹 ) ∈ ( TopOn ‘ 𝑌 ) ) |
| 92 | toponuni | ⊢ ( ( 𝐽 qTop 𝐹 ) ∈ ( TopOn ‘ 𝑌 ) → 𝑌 = ∪ ( 𝐽 qTop 𝐹 ) ) | |
| 93 | 91 92 | syl | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ⊆ 𝑈 ∧ ( ◡ 𝐹 “ 𝑥 ) ∈ ( 𝐽 ↾t 𝐴 ) ) ) ∧ 𝐴 ∈ ( Clsd ‘ 𝐽 ) ) → 𝑌 = ∪ ( 𝐽 qTop 𝐹 ) ) |
| 94 | 90 93 | sseqtrd | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ⊆ 𝑈 ∧ ( ◡ 𝐹 “ 𝑥 ) ∈ ( 𝐽 ↾t 𝐴 ) ) ) ∧ 𝐴 ∈ ( Clsd ‘ 𝐽 ) ) → 𝑈 ⊆ ∪ ( 𝐽 qTop 𝐹 ) ) |
| 95 | 90 | ssdifssd | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ⊆ 𝑈 ∧ ( ◡ 𝐹 “ 𝑥 ) ∈ ( 𝐽 ↾t 𝐴 ) ) ) ∧ 𝐴 ∈ ( Clsd ‘ 𝐽 ) ) → ( 𝑈 ∖ 𝑥 ) ⊆ 𝑌 ) |
| 96 | 40 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ⊆ 𝑈 ∧ ( ◡ 𝐹 “ 𝑥 ) ∈ ( 𝐽 ↾t 𝐴 ) ) ) ∧ 𝐴 ∈ ( Clsd ‘ 𝐽 ) ) → Fun 𝐹 ) |
| 97 | funcnvcnv | ⊢ ( Fun 𝐹 → Fun ◡ ◡ 𝐹 ) | |
| 98 | imadif | ⊢ ( Fun ◡ ◡ 𝐹 → ( ◡ 𝐹 “ ( 𝑈 ∖ 𝑥 ) ) = ( ( ◡ 𝐹 “ 𝑈 ) ∖ ( ◡ 𝐹 “ 𝑥 ) ) ) | |
| 99 | 96 97 98 | 3syl | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ⊆ 𝑈 ∧ ( ◡ 𝐹 “ 𝑥 ) ∈ ( 𝐽 ↾t 𝐴 ) ) ) ∧ 𝐴 ∈ ( Clsd ‘ 𝐽 ) ) → ( ◡ 𝐹 “ ( 𝑈 ∖ 𝑥 ) ) = ( ( ◡ 𝐹 “ 𝑈 ) ∖ ( ◡ 𝐹 “ 𝑥 ) ) ) |
| 100 | 4 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ⊆ 𝑈 ∧ ( ◡ 𝐹 “ 𝑥 ) ∈ ( 𝐽 ↾t 𝐴 ) ) ) ∧ 𝐴 ∈ ( Clsd ‘ 𝐽 ) ) → 𝐴 = ( ◡ 𝐹 “ 𝑈 ) ) |
| 101 | 100 | difeq1d | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ⊆ 𝑈 ∧ ( ◡ 𝐹 “ 𝑥 ) ∈ ( 𝐽 ↾t 𝐴 ) ) ) ∧ 𝐴 ∈ ( Clsd ‘ 𝐽 ) ) → ( 𝐴 ∖ ( ◡ 𝐹 “ 𝑥 ) ) = ( ( ◡ 𝐹 “ 𝑈 ) ∖ ( ◡ 𝐹 “ 𝑥 ) ) ) |
| 102 | 99 101 | eqtr4d | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ⊆ 𝑈 ∧ ( ◡ 𝐹 “ 𝑥 ) ∈ ( 𝐽 ↾t 𝐴 ) ) ) ∧ 𝐴 ∈ ( Clsd ‘ 𝐽 ) ) → ( ◡ 𝐹 “ ( 𝑈 ∖ 𝑥 ) ) = ( 𝐴 ∖ ( ◡ 𝐹 “ 𝑥 ) ) ) |
| 103 | simpr | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ⊆ 𝑈 ∧ ( ◡ 𝐹 “ 𝑥 ) ∈ ( 𝐽 ↾t 𝐴 ) ) ) ∧ 𝐴 ∈ ( Clsd ‘ 𝐽 ) ) → 𝐴 ∈ ( Clsd ‘ 𝐽 ) ) | |
| 104 | 38 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ⊆ 𝑈 ∧ ( ◡ 𝐹 “ 𝑥 ) ∈ ( 𝐽 ↾t 𝐴 ) ) ) ∧ 𝐴 ∈ ( Clsd ‘ 𝐽 ) ) → ( 𝐽 ↾t 𝐴 ) ∈ ( TopOn ‘ 𝐴 ) ) |
| 105 | toponuni | ⊢ ( ( 𝐽 ↾t 𝐴 ) ∈ ( TopOn ‘ 𝐴 ) → 𝐴 = ∪ ( 𝐽 ↾t 𝐴 ) ) | |
| 106 | 104 105 | syl | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ⊆ 𝑈 ∧ ( ◡ 𝐹 “ 𝑥 ) ∈ ( 𝐽 ↾t 𝐴 ) ) ) ∧ 𝐴 ∈ ( Clsd ‘ 𝐽 ) ) → 𝐴 = ∪ ( 𝐽 ↾t 𝐴 ) ) |
| 107 | 106 | difeq1d | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ⊆ 𝑈 ∧ ( ◡ 𝐹 “ 𝑥 ) ∈ ( 𝐽 ↾t 𝐴 ) ) ) ∧ 𝐴 ∈ ( Clsd ‘ 𝐽 ) ) → ( 𝐴 ∖ ( ◡ 𝐹 “ 𝑥 ) ) = ( ∪ ( 𝐽 ↾t 𝐴 ) ∖ ( ◡ 𝐹 “ 𝑥 ) ) ) |
| 108 | topontop | ⊢ ( ( 𝐽 ↾t 𝐴 ) ∈ ( TopOn ‘ 𝐴 ) → ( 𝐽 ↾t 𝐴 ) ∈ Top ) | |
| 109 | 104 108 | syl | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ⊆ 𝑈 ∧ ( ◡ 𝐹 “ 𝑥 ) ∈ ( 𝐽 ↾t 𝐴 ) ) ) ∧ 𝐴 ∈ ( Clsd ‘ 𝐽 ) ) → ( 𝐽 ↾t 𝐴 ) ∈ Top ) |
| 110 | simplrr | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ⊆ 𝑈 ∧ ( ◡ 𝐹 “ 𝑥 ) ∈ ( 𝐽 ↾t 𝐴 ) ) ) ∧ 𝐴 ∈ ( Clsd ‘ 𝐽 ) ) → ( ◡ 𝐹 “ 𝑥 ) ∈ ( 𝐽 ↾t 𝐴 ) ) | |
| 111 | eqid | ⊢ ∪ ( 𝐽 ↾t 𝐴 ) = ∪ ( 𝐽 ↾t 𝐴 ) | |
| 112 | 111 | opncld | ⊢ ( ( ( 𝐽 ↾t 𝐴 ) ∈ Top ∧ ( ◡ 𝐹 “ 𝑥 ) ∈ ( 𝐽 ↾t 𝐴 ) ) → ( ∪ ( 𝐽 ↾t 𝐴 ) ∖ ( ◡ 𝐹 “ 𝑥 ) ) ∈ ( Clsd ‘ ( 𝐽 ↾t 𝐴 ) ) ) |
| 113 | 109 110 112 | syl2anc | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ⊆ 𝑈 ∧ ( ◡ 𝐹 “ 𝑥 ) ∈ ( 𝐽 ↾t 𝐴 ) ) ) ∧ 𝐴 ∈ ( Clsd ‘ 𝐽 ) ) → ( ∪ ( 𝐽 ↾t 𝐴 ) ∖ ( ◡ 𝐹 “ 𝑥 ) ) ∈ ( Clsd ‘ ( 𝐽 ↾t 𝐴 ) ) ) |
| 114 | 107 113 | eqeltrd | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ⊆ 𝑈 ∧ ( ◡ 𝐹 “ 𝑥 ) ∈ ( 𝐽 ↾t 𝐴 ) ) ) ∧ 𝐴 ∈ ( Clsd ‘ 𝐽 ) ) → ( 𝐴 ∖ ( ◡ 𝐹 “ 𝑥 ) ) ∈ ( Clsd ‘ ( 𝐽 ↾t 𝐴 ) ) ) |
| 115 | restcldr | ⊢ ( ( 𝐴 ∈ ( Clsd ‘ 𝐽 ) ∧ ( 𝐴 ∖ ( ◡ 𝐹 “ 𝑥 ) ) ∈ ( Clsd ‘ ( 𝐽 ↾t 𝐴 ) ) ) → ( 𝐴 ∖ ( ◡ 𝐹 “ 𝑥 ) ) ∈ ( Clsd ‘ 𝐽 ) ) | |
| 116 | 103 114 115 | syl2anc | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ⊆ 𝑈 ∧ ( ◡ 𝐹 “ 𝑥 ) ∈ ( 𝐽 ↾t 𝐴 ) ) ) ∧ 𝐴 ∈ ( Clsd ‘ 𝐽 ) ) → ( 𝐴 ∖ ( ◡ 𝐹 “ 𝑥 ) ) ∈ ( Clsd ‘ 𝐽 ) ) |
| 117 | 102 116 | eqeltrd | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ⊆ 𝑈 ∧ ( ◡ 𝐹 “ 𝑥 ) ∈ ( 𝐽 ↾t 𝐴 ) ) ) ∧ 𝐴 ∈ ( Clsd ‘ 𝐽 ) ) → ( ◡ 𝐹 “ ( 𝑈 ∖ 𝑥 ) ) ∈ ( Clsd ‘ 𝐽 ) ) |
| 118 | qtopcld | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐹 : 𝑋 –onto→ 𝑌 ) → ( ( 𝑈 ∖ 𝑥 ) ∈ ( Clsd ‘ ( 𝐽 qTop 𝐹 ) ) ↔ ( ( 𝑈 ∖ 𝑥 ) ⊆ 𝑌 ∧ ( ◡ 𝐹 “ ( 𝑈 ∖ 𝑥 ) ) ∈ ( Clsd ‘ 𝐽 ) ) ) ) | |
| 119 | 1 2 118 | syl2anc | ⊢ ( 𝜑 → ( ( 𝑈 ∖ 𝑥 ) ∈ ( Clsd ‘ ( 𝐽 qTop 𝐹 ) ) ↔ ( ( 𝑈 ∖ 𝑥 ) ⊆ 𝑌 ∧ ( ◡ 𝐹 “ ( 𝑈 ∖ 𝑥 ) ) ∈ ( Clsd ‘ 𝐽 ) ) ) ) |
| 120 | 119 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ⊆ 𝑈 ∧ ( ◡ 𝐹 “ 𝑥 ) ∈ ( 𝐽 ↾t 𝐴 ) ) ) ∧ 𝐴 ∈ ( Clsd ‘ 𝐽 ) ) → ( ( 𝑈 ∖ 𝑥 ) ∈ ( Clsd ‘ ( 𝐽 qTop 𝐹 ) ) ↔ ( ( 𝑈 ∖ 𝑥 ) ⊆ 𝑌 ∧ ( ◡ 𝐹 “ ( 𝑈 ∖ 𝑥 ) ) ∈ ( Clsd ‘ 𝐽 ) ) ) ) |
| 121 | 95 117 120 | mpbir2and | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ⊆ 𝑈 ∧ ( ◡ 𝐹 “ 𝑥 ) ∈ ( 𝐽 ↾t 𝐴 ) ) ) ∧ 𝐴 ∈ ( Clsd ‘ 𝐽 ) ) → ( 𝑈 ∖ 𝑥 ) ∈ ( Clsd ‘ ( 𝐽 qTop 𝐹 ) ) ) |
| 122 | difssd | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ⊆ 𝑈 ∧ ( ◡ 𝐹 “ 𝑥 ) ∈ ( 𝐽 ↾t 𝐴 ) ) ) ∧ 𝐴 ∈ ( Clsd ‘ 𝐽 ) ) → ( 𝑈 ∖ 𝑥 ) ⊆ 𝑈 ) | |
| 123 | eqid | ⊢ ∪ ( 𝐽 qTop 𝐹 ) = ∪ ( 𝐽 qTop 𝐹 ) | |
| 124 | 123 | restcldi | ⊢ ( ( 𝑈 ⊆ ∪ ( 𝐽 qTop 𝐹 ) ∧ ( 𝑈 ∖ 𝑥 ) ∈ ( Clsd ‘ ( 𝐽 qTop 𝐹 ) ) ∧ ( 𝑈 ∖ 𝑥 ) ⊆ 𝑈 ) → ( 𝑈 ∖ 𝑥 ) ∈ ( Clsd ‘ ( ( 𝐽 qTop 𝐹 ) ↾t 𝑈 ) ) ) |
| 125 | 94 121 122 124 | syl3anc | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ⊆ 𝑈 ∧ ( ◡ 𝐹 “ 𝑥 ) ∈ ( 𝐽 ↾t 𝐴 ) ) ) ∧ 𝐴 ∈ ( Clsd ‘ 𝐽 ) ) → ( 𝑈 ∖ 𝑥 ) ∈ ( Clsd ‘ ( ( 𝐽 qTop 𝐹 ) ↾t 𝑈 ) ) ) |
| 126 | 89 125 | eqeltrrd | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ⊆ 𝑈 ∧ ( ◡ 𝐹 “ 𝑥 ) ∈ ( 𝐽 ↾t 𝐴 ) ) ) ∧ 𝐴 ∈ ( Clsd ‘ 𝐽 ) ) → ( ∪ ( ( 𝐽 qTop 𝐹 ) ↾t 𝑈 ) ∖ 𝑥 ) ∈ ( Clsd ‘ ( ( 𝐽 qTop 𝐹 ) ↾t 𝑈 ) ) ) |
| 127 | topontop | ⊢ ( ( ( 𝐽 qTop 𝐹 ) ↾t 𝑈 ) ∈ ( TopOn ‘ 𝑈 ) → ( ( 𝐽 qTop 𝐹 ) ↾t 𝑈 ) ∈ Top ) | |
| 128 | 86 127 | syl | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ⊆ 𝑈 ∧ ( ◡ 𝐹 “ 𝑥 ) ∈ ( 𝐽 ↾t 𝐴 ) ) ) ∧ 𝐴 ∈ ( Clsd ‘ 𝐽 ) ) → ( ( 𝐽 qTop 𝐹 ) ↾t 𝑈 ) ∈ Top ) |
| 129 | simplrl | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ⊆ 𝑈 ∧ ( ◡ 𝐹 “ 𝑥 ) ∈ ( 𝐽 ↾t 𝐴 ) ) ) ∧ 𝐴 ∈ ( Clsd ‘ 𝐽 ) ) → 𝑥 ⊆ 𝑈 ) | |
| 130 | 129 88 | sseqtrd | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ⊆ 𝑈 ∧ ( ◡ 𝐹 “ 𝑥 ) ∈ ( 𝐽 ↾t 𝐴 ) ) ) ∧ 𝐴 ∈ ( Clsd ‘ 𝐽 ) ) → 𝑥 ⊆ ∪ ( ( 𝐽 qTop 𝐹 ) ↾t 𝑈 ) ) |
| 131 | eqid | ⊢ ∪ ( ( 𝐽 qTop 𝐹 ) ↾t 𝑈 ) = ∪ ( ( 𝐽 qTop 𝐹 ) ↾t 𝑈 ) | |
| 132 | 131 | isopn2 | ⊢ ( ( ( ( 𝐽 qTop 𝐹 ) ↾t 𝑈 ) ∈ Top ∧ 𝑥 ⊆ ∪ ( ( 𝐽 qTop 𝐹 ) ↾t 𝑈 ) ) → ( 𝑥 ∈ ( ( 𝐽 qTop 𝐹 ) ↾t 𝑈 ) ↔ ( ∪ ( ( 𝐽 qTop 𝐹 ) ↾t 𝑈 ) ∖ 𝑥 ) ∈ ( Clsd ‘ ( ( 𝐽 qTop 𝐹 ) ↾t 𝑈 ) ) ) ) |
| 133 | 128 130 132 | syl2anc | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ⊆ 𝑈 ∧ ( ◡ 𝐹 “ 𝑥 ) ∈ ( 𝐽 ↾t 𝐴 ) ) ) ∧ 𝐴 ∈ ( Clsd ‘ 𝐽 ) ) → ( 𝑥 ∈ ( ( 𝐽 qTop 𝐹 ) ↾t 𝑈 ) ↔ ( ∪ ( ( 𝐽 qTop 𝐹 ) ↾t 𝑈 ) ∖ 𝑥 ) ∈ ( Clsd ‘ ( ( 𝐽 qTop 𝐹 ) ↾t 𝑈 ) ) ) ) |
| 134 | 126 133 | mpbird | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ⊆ 𝑈 ∧ ( ◡ 𝐹 “ 𝑥 ) ∈ ( 𝐽 ↾t 𝐴 ) ) ) ∧ 𝐴 ∈ ( Clsd ‘ 𝐽 ) ) → 𝑥 ∈ ( ( 𝐽 qTop 𝐹 ) ↾t 𝑈 ) ) |
| 135 | 5 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑥 ⊆ 𝑈 ∧ ( ◡ 𝐹 “ 𝑥 ) ∈ ( 𝐽 ↾t 𝐴 ) ) ) → ( 𝐴 ∈ 𝐽 ∨ 𝐴 ∈ ( Clsd ‘ 𝐽 ) ) ) |
| 136 | 85 134 135 | mpjaodan | ⊢ ( ( 𝜑 ∧ ( 𝑥 ⊆ 𝑈 ∧ ( ◡ 𝐹 “ 𝑥 ) ∈ ( 𝐽 ↾t 𝐴 ) ) ) → 𝑥 ∈ ( ( 𝐽 qTop 𝐹 ) ↾t 𝑈 ) ) |
| 137 | 136 | expr | ⊢ ( ( 𝜑 ∧ 𝑥 ⊆ 𝑈 ) → ( ( ◡ 𝐹 “ 𝑥 ) ∈ ( 𝐽 ↾t 𝐴 ) → 𝑥 ∈ ( ( 𝐽 qTop 𝐹 ) ↾t 𝑈 ) ) ) |
| 138 | 57 137 | sylbid | ⊢ ( ( 𝜑 ∧ 𝑥 ⊆ 𝑈 ) → ( ( ◡ ( 𝐹 ↾ 𝐴 ) “ 𝑥 ) ∈ ( 𝐽 ↾t 𝐴 ) → 𝑥 ∈ ( ( 𝐽 qTop 𝐹 ) ↾t 𝑈 ) ) ) |
| 139 | 138 | expimpd | ⊢ ( 𝜑 → ( ( 𝑥 ⊆ 𝑈 ∧ ( ◡ ( 𝐹 ↾ 𝐴 ) “ 𝑥 ) ∈ ( 𝐽 ↾t 𝐴 ) ) → 𝑥 ∈ ( ( 𝐽 qTop 𝐹 ) ↾t 𝑈 ) ) ) |
| 140 | 48 139 | sylbid | ⊢ ( 𝜑 → ( 𝑥 ∈ ( ( 𝐽 ↾t 𝐴 ) qTop ( 𝐹 ↾ 𝐴 ) ) → 𝑥 ∈ ( ( 𝐽 qTop 𝐹 ) ↾t 𝑈 ) ) ) |
| 141 | 140 | ssrdv | ⊢ ( 𝜑 → ( ( 𝐽 ↾t 𝐴 ) qTop ( 𝐹 ↾ 𝐴 ) ) ⊆ ( ( 𝐽 qTop 𝐹 ) ↾t 𝑈 ) ) |
| 142 | 36 141 | eqssd | ⊢ ( 𝜑 → ( ( 𝐽 qTop 𝐹 ) ↾t 𝑈 ) = ( ( 𝐽 ↾t 𝐴 ) qTop ( 𝐹 ↾ 𝐴 ) ) ) |