This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If the domain of an onto function exists, so does its codomain. (Contributed by NM, 23-Jul-2004)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | focdmex | ⊢ ( 𝐴 ∈ 𝐶 → ( 𝐹 : 𝐴 –onto→ 𝐵 → 𝐵 ∈ V ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fofun | ⊢ ( 𝐹 : 𝐴 –onto→ 𝐵 → Fun 𝐹 ) | |
| 2 | funrnex | ⊢ ( dom 𝐹 ∈ 𝐶 → ( Fun 𝐹 → ran 𝐹 ∈ V ) ) | |
| 3 | 1 2 | syl5com | ⊢ ( 𝐹 : 𝐴 –onto→ 𝐵 → ( dom 𝐹 ∈ 𝐶 → ran 𝐹 ∈ V ) ) |
| 4 | fof | ⊢ ( 𝐹 : 𝐴 –onto→ 𝐵 → 𝐹 : 𝐴 ⟶ 𝐵 ) | |
| 5 | 4 | fdmd | ⊢ ( 𝐹 : 𝐴 –onto→ 𝐵 → dom 𝐹 = 𝐴 ) |
| 6 | 5 | eleq1d | ⊢ ( 𝐹 : 𝐴 –onto→ 𝐵 → ( dom 𝐹 ∈ 𝐶 ↔ 𝐴 ∈ 𝐶 ) ) |
| 7 | forn | ⊢ ( 𝐹 : 𝐴 –onto→ 𝐵 → ran 𝐹 = 𝐵 ) | |
| 8 | 7 | eleq1d | ⊢ ( 𝐹 : 𝐴 –onto→ 𝐵 → ( ran 𝐹 ∈ V ↔ 𝐵 ∈ V ) ) |
| 9 | 3 6 8 | 3imtr3d | ⊢ ( 𝐹 : 𝐴 –onto→ 𝐵 → ( 𝐴 ∈ 𝐶 → 𝐵 ∈ V ) ) |
| 10 | 9 | com12 | ⊢ ( 𝐴 ∈ 𝐶 → ( 𝐹 : 𝐴 –onto→ 𝐵 → 𝐵 ∈ V ) ) |