This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Continuity of a restriction from a subspace. (Contributed by Jeff Hankins, 11-Jul-2009) (Revised by Mario Carneiro, 21-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | cnrest.1 | ⊢ 𝑋 = ∪ 𝐽 | |
| Assertion | cnrest | ⊢ ( ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ∧ 𝐴 ⊆ 𝑋 ) → ( 𝐹 ↾ 𝐴 ) ∈ ( ( 𝐽 ↾t 𝐴 ) Cn 𝐾 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnrest.1 | ⊢ 𝑋 = ∪ 𝐽 | |
| 2 | eqid | ⊢ ∪ 𝐾 = ∪ 𝐾 | |
| 3 | 1 2 | cnf | ⊢ ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) → 𝐹 : 𝑋 ⟶ ∪ 𝐾 ) |
| 4 | 3 | adantr | ⊢ ( ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ∧ 𝐴 ⊆ 𝑋 ) → 𝐹 : 𝑋 ⟶ ∪ 𝐾 ) |
| 5 | simpr | ⊢ ( ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ∧ 𝐴 ⊆ 𝑋 ) → 𝐴 ⊆ 𝑋 ) | |
| 6 | 4 5 | fssresd | ⊢ ( ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ∧ 𝐴 ⊆ 𝑋 ) → ( 𝐹 ↾ 𝐴 ) : 𝐴 ⟶ ∪ 𝐾 ) |
| 7 | cnvresima | ⊢ ( ◡ ( 𝐹 ↾ 𝐴 ) “ 𝑜 ) = ( ( ◡ 𝐹 “ 𝑜 ) ∩ 𝐴 ) | |
| 8 | cntop1 | ⊢ ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) → 𝐽 ∈ Top ) | |
| 9 | 8 | adantr | ⊢ ( ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ∧ 𝐴 ⊆ 𝑋 ) → 𝐽 ∈ Top ) |
| 10 | 9 | adantr | ⊢ ( ( ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ∧ 𝐴 ⊆ 𝑋 ) ∧ 𝑜 ∈ 𝐾 ) → 𝐽 ∈ Top ) |
| 11 | 1 | topopn | ⊢ ( 𝐽 ∈ Top → 𝑋 ∈ 𝐽 ) |
| 12 | ssexg | ⊢ ( ( 𝐴 ⊆ 𝑋 ∧ 𝑋 ∈ 𝐽 ) → 𝐴 ∈ V ) | |
| 13 | 12 | ancoms | ⊢ ( ( 𝑋 ∈ 𝐽 ∧ 𝐴 ⊆ 𝑋 ) → 𝐴 ∈ V ) |
| 14 | 11 13 | sylan | ⊢ ( ( 𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋 ) → 𝐴 ∈ V ) |
| 15 | 8 14 | sylan | ⊢ ( ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ∧ 𝐴 ⊆ 𝑋 ) → 𝐴 ∈ V ) |
| 16 | 15 | adantr | ⊢ ( ( ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ∧ 𝐴 ⊆ 𝑋 ) ∧ 𝑜 ∈ 𝐾 ) → 𝐴 ∈ V ) |
| 17 | cnima | ⊢ ( ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ∧ 𝑜 ∈ 𝐾 ) → ( ◡ 𝐹 “ 𝑜 ) ∈ 𝐽 ) | |
| 18 | 17 | adantlr | ⊢ ( ( ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ∧ 𝐴 ⊆ 𝑋 ) ∧ 𝑜 ∈ 𝐾 ) → ( ◡ 𝐹 “ 𝑜 ) ∈ 𝐽 ) |
| 19 | elrestr | ⊢ ( ( 𝐽 ∈ Top ∧ 𝐴 ∈ V ∧ ( ◡ 𝐹 “ 𝑜 ) ∈ 𝐽 ) → ( ( ◡ 𝐹 “ 𝑜 ) ∩ 𝐴 ) ∈ ( 𝐽 ↾t 𝐴 ) ) | |
| 20 | 10 16 18 19 | syl3anc | ⊢ ( ( ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ∧ 𝐴 ⊆ 𝑋 ) ∧ 𝑜 ∈ 𝐾 ) → ( ( ◡ 𝐹 “ 𝑜 ) ∩ 𝐴 ) ∈ ( 𝐽 ↾t 𝐴 ) ) |
| 21 | 7 20 | eqeltrid | ⊢ ( ( ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ∧ 𝐴 ⊆ 𝑋 ) ∧ 𝑜 ∈ 𝐾 ) → ( ◡ ( 𝐹 ↾ 𝐴 ) “ 𝑜 ) ∈ ( 𝐽 ↾t 𝐴 ) ) |
| 22 | 21 | ralrimiva | ⊢ ( ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ∧ 𝐴 ⊆ 𝑋 ) → ∀ 𝑜 ∈ 𝐾 ( ◡ ( 𝐹 ↾ 𝐴 ) “ 𝑜 ) ∈ ( 𝐽 ↾t 𝐴 ) ) |
| 23 | 1 | toptopon | ⊢ ( 𝐽 ∈ Top ↔ 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) |
| 24 | 8 23 | sylib | ⊢ ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) → 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) |
| 25 | resttopon | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐴 ⊆ 𝑋 ) → ( 𝐽 ↾t 𝐴 ) ∈ ( TopOn ‘ 𝐴 ) ) | |
| 26 | 24 25 | sylan | ⊢ ( ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ∧ 𝐴 ⊆ 𝑋 ) → ( 𝐽 ↾t 𝐴 ) ∈ ( TopOn ‘ 𝐴 ) ) |
| 27 | cntop2 | ⊢ ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) → 𝐾 ∈ Top ) | |
| 28 | 27 | adantr | ⊢ ( ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ∧ 𝐴 ⊆ 𝑋 ) → 𝐾 ∈ Top ) |
| 29 | 2 | toptopon | ⊢ ( 𝐾 ∈ Top ↔ 𝐾 ∈ ( TopOn ‘ ∪ 𝐾 ) ) |
| 30 | 28 29 | sylib | ⊢ ( ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ∧ 𝐴 ⊆ 𝑋 ) → 𝐾 ∈ ( TopOn ‘ ∪ 𝐾 ) ) |
| 31 | iscn | ⊢ ( ( ( 𝐽 ↾t 𝐴 ) ∈ ( TopOn ‘ 𝐴 ) ∧ 𝐾 ∈ ( TopOn ‘ ∪ 𝐾 ) ) → ( ( 𝐹 ↾ 𝐴 ) ∈ ( ( 𝐽 ↾t 𝐴 ) Cn 𝐾 ) ↔ ( ( 𝐹 ↾ 𝐴 ) : 𝐴 ⟶ ∪ 𝐾 ∧ ∀ 𝑜 ∈ 𝐾 ( ◡ ( 𝐹 ↾ 𝐴 ) “ 𝑜 ) ∈ ( 𝐽 ↾t 𝐴 ) ) ) ) | |
| 32 | 26 30 31 | syl2anc | ⊢ ( ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ∧ 𝐴 ⊆ 𝑋 ) → ( ( 𝐹 ↾ 𝐴 ) ∈ ( ( 𝐽 ↾t 𝐴 ) Cn 𝐾 ) ↔ ( ( 𝐹 ↾ 𝐴 ) : 𝐴 ⟶ ∪ 𝐾 ∧ ∀ 𝑜 ∈ 𝐾 ( ◡ ( 𝐹 ↾ 𝐴 ) “ 𝑜 ) ∈ ( 𝐽 ↾t 𝐴 ) ) ) ) |
| 33 | 6 22 32 | mpbir2and | ⊢ ( ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ∧ 𝐴 ⊆ 𝑋 ) → ( 𝐹 ↾ 𝐴 ) ∈ ( ( 𝐽 ↾t 𝐴 ) Cn 𝐾 ) ) |