This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The property of being a closed set in the quotient topology. (Contributed by Mario Carneiro, 24-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | qtopcld | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐹 : 𝑋 –onto→ 𝑌 ) → ( 𝐴 ∈ ( Clsd ‘ ( 𝐽 qTop 𝐹 ) ) ↔ ( 𝐴 ⊆ 𝑌 ∧ ( ◡ 𝐹 “ 𝐴 ) ∈ ( Clsd ‘ 𝐽 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | qtoptopon | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐹 : 𝑋 –onto→ 𝑌 ) → ( 𝐽 qTop 𝐹 ) ∈ ( TopOn ‘ 𝑌 ) ) | |
| 2 | topontop | ⊢ ( ( 𝐽 qTop 𝐹 ) ∈ ( TopOn ‘ 𝑌 ) → ( 𝐽 qTop 𝐹 ) ∈ Top ) | |
| 3 | eqid | ⊢ ∪ ( 𝐽 qTop 𝐹 ) = ∪ ( 𝐽 qTop 𝐹 ) | |
| 4 | 3 | iscld | ⊢ ( ( 𝐽 qTop 𝐹 ) ∈ Top → ( 𝐴 ∈ ( Clsd ‘ ( 𝐽 qTop 𝐹 ) ) ↔ ( 𝐴 ⊆ ∪ ( 𝐽 qTop 𝐹 ) ∧ ( ∪ ( 𝐽 qTop 𝐹 ) ∖ 𝐴 ) ∈ ( 𝐽 qTop 𝐹 ) ) ) ) |
| 5 | 1 2 4 | 3syl | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐹 : 𝑋 –onto→ 𝑌 ) → ( 𝐴 ∈ ( Clsd ‘ ( 𝐽 qTop 𝐹 ) ) ↔ ( 𝐴 ⊆ ∪ ( 𝐽 qTop 𝐹 ) ∧ ( ∪ ( 𝐽 qTop 𝐹 ) ∖ 𝐴 ) ∈ ( 𝐽 qTop 𝐹 ) ) ) ) |
| 6 | toponuni | ⊢ ( ( 𝐽 qTop 𝐹 ) ∈ ( TopOn ‘ 𝑌 ) → 𝑌 = ∪ ( 𝐽 qTop 𝐹 ) ) | |
| 7 | 1 6 | syl | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐹 : 𝑋 –onto→ 𝑌 ) → 𝑌 = ∪ ( 𝐽 qTop 𝐹 ) ) |
| 8 | 7 | sseq2d | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐹 : 𝑋 –onto→ 𝑌 ) → ( 𝐴 ⊆ 𝑌 ↔ 𝐴 ⊆ ∪ ( 𝐽 qTop 𝐹 ) ) ) |
| 9 | 7 | difeq1d | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐹 : 𝑋 –onto→ 𝑌 ) → ( 𝑌 ∖ 𝐴 ) = ( ∪ ( 𝐽 qTop 𝐹 ) ∖ 𝐴 ) ) |
| 10 | 9 | eleq1d | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐹 : 𝑋 –onto→ 𝑌 ) → ( ( 𝑌 ∖ 𝐴 ) ∈ ( 𝐽 qTop 𝐹 ) ↔ ( ∪ ( 𝐽 qTop 𝐹 ) ∖ 𝐴 ) ∈ ( 𝐽 qTop 𝐹 ) ) ) |
| 11 | 8 10 | anbi12d | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐹 : 𝑋 –onto→ 𝑌 ) → ( ( 𝐴 ⊆ 𝑌 ∧ ( 𝑌 ∖ 𝐴 ) ∈ ( 𝐽 qTop 𝐹 ) ) ↔ ( 𝐴 ⊆ ∪ ( 𝐽 qTop 𝐹 ) ∧ ( ∪ ( 𝐽 qTop 𝐹 ) ∖ 𝐴 ) ∈ ( 𝐽 qTop 𝐹 ) ) ) ) |
| 12 | elqtop3 | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐹 : 𝑋 –onto→ 𝑌 ) → ( ( 𝑌 ∖ 𝐴 ) ∈ ( 𝐽 qTop 𝐹 ) ↔ ( ( 𝑌 ∖ 𝐴 ) ⊆ 𝑌 ∧ ( ◡ 𝐹 “ ( 𝑌 ∖ 𝐴 ) ) ∈ 𝐽 ) ) ) | |
| 13 | 12 | adantr | ⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐹 : 𝑋 –onto→ 𝑌 ) ∧ 𝐴 ⊆ 𝑌 ) → ( ( 𝑌 ∖ 𝐴 ) ∈ ( 𝐽 qTop 𝐹 ) ↔ ( ( 𝑌 ∖ 𝐴 ) ⊆ 𝑌 ∧ ( ◡ 𝐹 “ ( 𝑌 ∖ 𝐴 ) ) ∈ 𝐽 ) ) ) |
| 14 | difss | ⊢ ( 𝑌 ∖ 𝐴 ) ⊆ 𝑌 | |
| 15 | 14 | biantrur | ⊢ ( ( ◡ 𝐹 “ ( 𝑌 ∖ 𝐴 ) ) ∈ 𝐽 ↔ ( ( 𝑌 ∖ 𝐴 ) ⊆ 𝑌 ∧ ( ◡ 𝐹 “ ( 𝑌 ∖ 𝐴 ) ) ∈ 𝐽 ) ) |
| 16 | fofun | ⊢ ( 𝐹 : 𝑋 –onto→ 𝑌 → Fun 𝐹 ) | |
| 17 | 16 | ad2antlr | ⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐹 : 𝑋 –onto→ 𝑌 ) ∧ 𝐴 ⊆ 𝑌 ) → Fun 𝐹 ) |
| 18 | funcnvcnv | ⊢ ( Fun 𝐹 → Fun ◡ ◡ 𝐹 ) | |
| 19 | imadif | ⊢ ( Fun ◡ ◡ 𝐹 → ( ◡ 𝐹 “ ( 𝑌 ∖ 𝐴 ) ) = ( ( ◡ 𝐹 “ 𝑌 ) ∖ ( ◡ 𝐹 “ 𝐴 ) ) ) | |
| 20 | 17 18 19 | 3syl | ⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐹 : 𝑋 –onto→ 𝑌 ) ∧ 𝐴 ⊆ 𝑌 ) → ( ◡ 𝐹 “ ( 𝑌 ∖ 𝐴 ) ) = ( ( ◡ 𝐹 “ 𝑌 ) ∖ ( ◡ 𝐹 “ 𝐴 ) ) ) |
| 21 | fof | ⊢ ( 𝐹 : 𝑋 –onto→ 𝑌 → 𝐹 : 𝑋 ⟶ 𝑌 ) | |
| 22 | fimacnv | ⊢ ( 𝐹 : 𝑋 ⟶ 𝑌 → ( ◡ 𝐹 “ 𝑌 ) = 𝑋 ) | |
| 23 | 21 22 | syl | ⊢ ( 𝐹 : 𝑋 –onto→ 𝑌 → ( ◡ 𝐹 “ 𝑌 ) = 𝑋 ) |
| 24 | 23 | ad2antlr | ⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐹 : 𝑋 –onto→ 𝑌 ) ∧ 𝐴 ⊆ 𝑌 ) → ( ◡ 𝐹 “ 𝑌 ) = 𝑋 ) |
| 25 | toponuni | ⊢ ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) → 𝑋 = ∪ 𝐽 ) | |
| 26 | 25 | ad2antrr | ⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐹 : 𝑋 –onto→ 𝑌 ) ∧ 𝐴 ⊆ 𝑌 ) → 𝑋 = ∪ 𝐽 ) |
| 27 | 24 26 | eqtrd | ⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐹 : 𝑋 –onto→ 𝑌 ) ∧ 𝐴 ⊆ 𝑌 ) → ( ◡ 𝐹 “ 𝑌 ) = ∪ 𝐽 ) |
| 28 | 27 | difeq1d | ⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐹 : 𝑋 –onto→ 𝑌 ) ∧ 𝐴 ⊆ 𝑌 ) → ( ( ◡ 𝐹 “ 𝑌 ) ∖ ( ◡ 𝐹 “ 𝐴 ) ) = ( ∪ 𝐽 ∖ ( ◡ 𝐹 “ 𝐴 ) ) ) |
| 29 | 20 28 | eqtrd | ⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐹 : 𝑋 –onto→ 𝑌 ) ∧ 𝐴 ⊆ 𝑌 ) → ( ◡ 𝐹 “ ( 𝑌 ∖ 𝐴 ) ) = ( ∪ 𝐽 ∖ ( ◡ 𝐹 “ 𝐴 ) ) ) |
| 30 | 29 | eleq1d | ⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐹 : 𝑋 –onto→ 𝑌 ) ∧ 𝐴 ⊆ 𝑌 ) → ( ( ◡ 𝐹 “ ( 𝑌 ∖ 𝐴 ) ) ∈ 𝐽 ↔ ( ∪ 𝐽 ∖ ( ◡ 𝐹 “ 𝐴 ) ) ∈ 𝐽 ) ) |
| 31 | topontop | ⊢ ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) → 𝐽 ∈ Top ) | |
| 32 | 31 | ad2antrr | ⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐹 : 𝑋 –onto→ 𝑌 ) ∧ 𝐴 ⊆ 𝑌 ) → 𝐽 ∈ Top ) |
| 33 | cnvimass | ⊢ ( ◡ 𝐹 “ 𝐴 ) ⊆ dom 𝐹 | |
| 34 | fofn | ⊢ ( 𝐹 : 𝑋 –onto→ 𝑌 → 𝐹 Fn 𝑋 ) | |
| 35 | 34 | fndmd | ⊢ ( 𝐹 : 𝑋 –onto→ 𝑌 → dom 𝐹 = 𝑋 ) |
| 36 | 35 | ad2antlr | ⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐹 : 𝑋 –onto→ 𝑌 ) ∧ 𝐴 ⊆ 𝑌 ) → dom 𝐹 = 𝑋 ) |
| 37 | 33 36 | sseqtrid | ⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐹 : 𝑋 –onto→ 𝑌 ) ∧ 𝐴 ⊆ 𝑌 ) → ( ◡ 𝐹 “ 𝐴 ) ⊆ 𝑋 ) |
| 38 | 37 26 | sseqtrd | ⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐹 : 𝑋 –onto→ 𝑌 ) ∧ 𝐴 ⊆ 𝑌 ) → ( ◡ 𝐹 “ 𝐴 ) ⊆ ∪ 𝐽 ) |
| 39 | eqid | ⊢ ∪ 𝐽 = ∪ 𝐽 | |
| 40 | 39 | iscld2 | ⊢ ( ( 𝐽 ∈ Top ∧ ( ◡ 𝐹 “ 𝐴 ) ⊆ ∪ 𝐽 ) → ( ( ◡ 𝐹 “ 𝐴 ) ∈ ( Clsd ‘ 𝐽 ) ↔ ( ∪ 𝐽 ∖ ( ◡ 𝐹 “ 𝐴 ) ) ∈ 𝐽 ) ) |
| 41 | 32 38 40 | syl2anc | ⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐹 : 𝑋 –onto→ 𝑌 ) ∧ 𝐴 ⊆ 𝑌 ) → ( ( ◡ 𝐹 “ 𝐴 ) ∈ ( Clsd ‘ 𝐽 ) ↔ ( ∪ 𝐽 ∖ ( ◡ 𝐹 “ 𝐴 ) ) ∈ 𝐽 ) ) |
| 42 | 30 41 | bitr4d | ⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐹 : 𝑋 –onto→ 𝑌 ) ∧ 𝐴 ⊆ 𝑌 ) → ( ( ◡ 𝐹 “ ( 𝑌 ∖ 𝐴 ) ) ∈ 𝐽 ↔ ( ◡ 𝐹 “ 𝐴 ) ∈ ( Clsd ‘ 𝐽 ) ) ) |
| 43 | 15 42 | bitr3id | ⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐹 : 𝑋 –onto→ 𝑌 ) ∧ 𝐴 ⊆ 𝑌 ) → ( ( ( 𝑌 ∖ 𝐴 ) ⊆ 𝑌 ∧ ( ◡ 𝐹 “ ( 𝑌 ∖ 𝐴 ) ) ∈ 𝐽 ) ↔ ( ◡ 𝐹 “ 𝐴 ) ∈ ( Clsd ‘ 𝐽 ) ) ) |
| 44 | 13 43 | bitrd | ⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐹 : 𝑋 –onto→ 𝑌 ) ∧ 𝐴 ⊆ 𝑌 ) → ( ( 𝑌 ∖ 𝐴 ) ∈ ( 𝐽 qTop 𝐹 ) ↔ ( ◡ 𝐹 “ 𝐴 ) ∈ ( Clsd ‘ 𝐽 ) ) ) |
| 45 | 44 | pm5.32da | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐹 : 𝑋 –onto→ 𝑌 ) → ( ( 𝐴 ⊆ 𝑌 ∧ ( 𝑌 ∖ 𝐴 ) ∈ ( 𝐽 qTop 𝐹 ) ) ↔ ( 𝐴 ⊆ 𝑌 ∧ ( ◡ 𝐹 “ 𝐴 ) ∈ ( Clsd ‘ 𝐽 ) ) ) ) |
| 46 | 5 11 45 | 3bitr2d | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐹 : 𝑋 –onto→ 𝑌 ) → ( 𝐴 ∈ ( Clsd ‘ ( 𝐽 qTop 𝐹 ) ) ↔ ( 𝐴 ⊆ 𝑌 ∧ ( ◡ 𝐹 “ 𝐴 ) ∈ ( Clsd ‘ 𝐽 ) ) ) ) |