This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A surjective continuous function from J to K induces a topology J qTop F on the base set of K . This topology is in general finer than K . Together with qtopid , this implies that J qTop F is the finest topology making F continuous, i.e. the final topology with respect to the family { F } . (Contributed by Mario Carneiro, 24-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | qtopss | ⊢ ( ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ∧ 𝐾 ∈ ( TopOn ‘ 𝑌 ) ∧ ran 𝐹 = 𝑌 ) → 𝐾 ⊆ ( 𝐽 qTop 𝐹 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | toponss | ⊢ ( ( 𝐾 ∈ ( TopOn ‘ 𝑌 ) ∧ 𝑥 ∈ 𝐾 ) → 𝑥 ⊆ 𝑌 ) | |
| 2 | 1 | 3ad2antl2 | ⊢ ( ( ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ∧ 𝐾 ∈ ( TopOn ‘ 𝑌 ) ∧ ran 𝐹 = 𝑌 ) ∧ 𝑥 ∈ 𝐾 ) → 𝑥 ⊆ 𝑌 ) |
| 3 | cnima | ⊢ ( ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ∧ 𝑥 ∈ 𝐾 ) → ( ◡ 𝐹 “ 𝑥 ) ∈ 𝐽 ) | |
| 4 | 3 | 3ad2antl1 | ⊢ ( ( ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ∧ 𝐾 ∈ ( TopOn ‘ 𝑌 ) ∧ ran 𝐹 = 𝑌 ) ∧ 𝑥 ∈ 𝐾 ) → ( ◡ 𝐹 “ 𝑥 ) ∈ 𝐽 ) |
| 5 | simpl1 | ⊢ ( ( ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ∧ 𝐾 ∈ ( TopOn ‘ 𝑌 ) ∧ ran 𝐹 = 𝑌 ) ∧ 𝑥 ∈ 𝐾 ) → 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ) | |
| 6 | cntop1 | ⊢ ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) → 𝐽 ∈ Top ) | |
| 7 | 5 6 | syl | ⊢ ( ( ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ∧ 𝐾 ∈ ( TopOn ‘ 𝑌 ) ∧ ran 𝐹 = 𝑌 ) ∧ 𝑥 ∈ 𝐾 ) → 𝐽 ∈ Top ) |
| 8 | toptopon2 | ⊢ ( 𝐽 ∈ Top ↔ 𝐽 ∈ ( TopOn ‘ ∪ 𝐽 ) ) | |
| 9 | 7 8 | sylib | ⊢ ( ( ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ∧ 𝐾 ∈ ( TopOn ‘ 𝑌 ) ∧ ran 𝐹 = 𝑌 ) ∧ 𝑥 ∈ 𝐾 ) → 𝐽 ∈ ( TopOn ‘ ∪ 𝐽 ) ) |
| 10 | simpl2 | ⊢ ( ( ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ∧ 𝐾 ∈ ( TopOn ‘ 𝑌 ) ∧ ran 𝐹 = 𝑌 ) ∧ 𝑥 ∈ 𝐾 ) → 𝐾 ∈ ( TopOn ‘ 𝑌 ) ) | |
| 11 | cnf2 | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ ∪ 𝐽 ) ∧ 𝐾 ∈ ( TopOn ‘ 𝑌 ) ∧ 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ) → 𝐹 : ∪ 𝐽 ⟶ 𝑌 ) | |
| 12 | 9 10 5 11 | syl3anc | ⊢ ( ( ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ∧ 𝐾 ∈ ( TopOn ‘ 𝑌 ) ∧ ran 𝐹 = 𝑌 ) ∧ 𝑥 ∈ 𝐾 ) → 𝐹 : ∪ 𝐽 ⟶ 𝑌 ) |
| 13 | 12 | ffnd | ⊢ ( ( ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ∧ 𝐾 ∈ ( TopOn ‘ 𝑌 ) ∧ ran 𝐹 = 𝑌 ) ∧ 𝑥 ∈ 𝐾 ) → 𝐹 Fn ∪ 𝐽 ) |
| 14 | simpl3 | ⊢ ( ( ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ∧ 𝐾 ∈ ( TopOn ‘ 𝑌 ) ∧ ran 𝐹 = 𝑌 ) ∧ 𝑥 ∈ 𝐾 ) → ran 𝐹 = 𝑌 ) | |
| 15 | df-fo | ⊢ ( 𝐹 : ∪ 𝐽 –onto→ 𝑌 ↔ ( 𝐹 Fn ∪ 𝐽 ∧ ran 𝐹 = 𝑌 ) ) | |
| 16 | 13 14 15 | sylanbrc | ⊢ ( ( ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ∧ 𝐾 ∈ ( TopOn ‘ 𝑌 ) ∧ ran 𝐹 = 𝑌 ) ∧ 𝑥 ∈ 𝐾 ) → 𝐹 : ∪ 𝐽 –onto→ 𝑌 ) |
| 17 | elqtop3 | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ ∪ 𝐽 ) ∧ 𝐹 : ∪ 𝐽 –onto→ 𝑌 ) → ( 𝑥 ∈ ( 𝐽 qTop 𝐹 ) ↔ ( 𝑥 ⊆ 𝑌 ∧ ( ◡ 𝐹 “ 𝑥 ) ∈ 𝐽 ) ) ) | |
| 18 | 9 16 17 | syl2anc | ⊢ ( ( ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ∧ 𝐾 ∈ ( TopOn ‘ 𝑌 ) ∧ ran 𝐹 = 𝑌 ) ∧ 𝑥 ∈ 𝐾 ) → ( 𝑥 ∈ ( 𝐽 qTop 𝐹 ) ↔ ( 𝑥 ⊆ 𝑌 ∧ ( ◡ 𝐹 “ 𝑥 ) ∈ 𝐽 ) ) ) |
| 19 | 2 4 18 | mpbir2and | ⊢ ( ( ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ∧ 𝐾 ∈ ( TopOn ‘ 𝑌 ) ∧ ran 𝐹 = 𝑌 ) ∧ 𝑥 ∈ 𝐾 ) → 𝑥 ∈ ( 𝐽 qTop 𝐹 ) ) |
| 20 | 19 | ex | ⊢ ( ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ∧ 𝐾 ∈ ( TopOn ‘ 𝑌 ) ∧ ran 𝐹 = 𝑌 ) → ( 𝑥 ∈ 𝐾 → 𝑥 ∈ ( 𝐽 qTop 𝐹 ) ) ) |
| 21 | 20 | ssrdv | ⊢ ( ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ∧ 𝐾 ∈ ( TopOn ‘ 𝑌 ) ∧ ran 𝐹 = 𝑌 ) → 𝐾 ⊆ ( 𝐽 qTop 𝐹 ) ) |