This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A set which is closed in the subspace topology induced by a closed set is closed in the original topology. (Contributed by Jeff Madsen, 2-Sep-2009)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | restcldr | ⊢ ( ( 𝐴 ∈ ( Clsd ‘ 𝐽 ) ∧ 𝐵 ∈ ( Clsd ‘ ( 𝐽 ↾t 𝐴 ) ) ) → 𝐵 ∈ ( Clsd ‘ 𝐽 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cldrcl | ⊢ ( 𝐴 ∈ ( Clsd ‘ 𝐽 ) → 𝐽 ∈ Top ) | |
| 2 | eqid | ⊢ ∪ 𝐽 = ∪ 𝐽 | |
| 3 | 2 | cldss | ⊢ ( 𝐴 ∈ ( Clsd ‘ 𝐽 ) → 𝐴 ⊆ ∪ 𝐽 ) |
| 4 | 2 | restcld | ⊢ ( ( 𝐽 ∈ Top ∧ 𝐴 ⊆ ∪ 𝐽 ) → ( 𝐵 ∈ ( Clsd ‘ ( 𝐽 ↾t 𝐴 ) ) ↔ ∃ 𝑣 ∈ ( Clsd ‘ 𝐽 ) 𝐵 = ( 𝑣 ∩ 𝐴 ) ) ) |
| 5 | 1 3 4 | syl2anc | ⊢ ( 𝐴 ∈ ( Clsd ‘ 𝐽 ) → ( 𝐵 ∈ ( Clsd ‘ ( 𝐽 ↾t 𝐴 ) ) ↔ ∃ 𝑣 ∈ ( Clsd ‘ 𝐽 ) 𝐵 = ( 𝑣 ∩ 𝐴 ) ) ) |
| 6 | incld | ⊢ ( ( 𝑣 ∈ ( Clsd ‘ 𝐽 ) ∧ 𝐴 ∈ ( Clsd ‘ 𝐽 ) ) → ( 𝑣 ∩ 𝐴 ) ∈ ( Clsd ‘ 𝐽 ) ) | |
| 7 | 6 | ancoms | ⊢ ( ( 𝐴 ∈ ( Clsd ‘ 𝐽 ) ∧ 𝑣 ∈ ( Clsd ‘ 𝐽 ) ) → ( 𝑣 ∩ 𝐴 ) ∈ ( Clsd ‘ 𝐽 ) ) |
| 8 | eleq1 | ⊢ ( 𝐵 = ( 𝑣 ∩ 𝐴 ) → ( 𝐵 ∈ ( Clsd ‘ 𝐽 ) ↔ ( 𝑣 ∩ 𝐴 ) ∈ ( Clsd ‘ 𝐽 ) ) ) | |
| 9 | 7 8 | syl5ibrcom | ⊢ ( ( 𝐴 ∈ ( Clsd ‘ 𝐽 ) ∧ 𝑣 ∈ ( Clsd ‘ 𝐽 ) ) → ( 𝐵 = ( 𝑣 ∩ 𝐴 ) → 𝐵 ∈ ( Clsd ‘ 𝐽 ) ) ) |
| 10 | 9 | rexlimdva | ⊢ ( 𝐴 ∈ ( Clsd ‘ 𝐽 ) → ( ∃ 𝑣 ∈ ( Clsd ‘ 𝐽 ) 𝐵 = ( 𝑣 ∩ 𝐴 ) → 𝐵 ∈ ( Clsd ‘ 𝐽 ) ) ) |
| 11 | 5 10 | sylbid | ⊢ ( 𝐴 ∈ ( Clsd ‘ 𝐽 ) → ( 𝐵 ∈ ( Clsd ‘ ( 𝐽 ↾t 𝐴 ) ) → 𝐵 ∈ ( Clsd ‘ 𝐽 ) ) ) |
| 12 | 11 | imp | ⊢ ( ( 𝐴 ∈ ( Clsd ‘ 𝐽 ) ∧ 𝐵 ∈ ( Clsd ‘ ( 𝐽 ↾t 𝐴 ) ) ) → 𝐵 ∈ ( Clsd ‘ 𝐽 ) ) |