This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If F is a surjective continuous open map, then it is a quotient map. (An open map is a function that maps open sets to open sets.) (Contributed by Mario Carneiro, 24-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | qtopomap.4 | ⊢ ( 𝜑 → 𝐾 ∈ ( TopOn ‘ 𝑌 ) ) | |
| qtopomap.5 | ⊢ ( 𝜑 → 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ) | ||
| qtopomap.6 | ⊢ ( 𝜑 → ran 𝐹 = 𝑌 ) | ||
| qtopomap.7 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐽 ) → ( 𝐹 “ 𝑥 ) ∈ 𝐾 ) | ||
| Assertion | qtopomap | ⊢ ( 𝜑 → 𝐾 = ( 𝐽 qTop 𝐹 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | qtopomap.4 | ⊢ ( 𝜑 → 𝐾 ∈ ( TopOn ‘ 𝑌 ) ) | |
| 2 | qtopomap.5 | ⊢ ( 𝜑 → 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ) | |
| 3 | qtopomap.6 | ⊢ ( 𝜑 → ran 𝐹 = 𝑌 ) | |
| 4 | qtopomap.7 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐽 ) → ( 𝐹 “ 𝑥 ) ∈ 𝐾 ) | |
| 5 | qtopss | ⊢ ( ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ∧ 𝐾 ∈ ( TopOn ‘ 𝑌 ) ∧ ran 𝐹 = 𝑌 ) → 𝐾 ⊆ ( 𝐽 qTop 𝐹 ) ) | |
| 6 | 2 1 3 5 | syl3anc | ⊢ ( 𝜑 → 𝐾 ⊆ ( 𝐽 qTop 𝐹 ) ) |
| 7 | cntop1 | ⊢ ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) → 𝐽 ∈ Top ) | |
| 8 | 2 7 | syl | ⊢ ( 𝜑 → 𝐽 ∈ Top ) |
| 9 | toptopon2 | ⊢ ( 𝐽 ∈ Top ↔ 𝐽 ∈ ( TopOn ‘ ∪ 𝐽 ) ) | |
| 10 | 8 9 | sylib | ⊢ ( 𝜑 → 𝐽 ∈ ( TopOn ‘ ∪ 𝐽 ) ) |
| 11 | cnf2 | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ ∪ 𝐽 ) ∧ 𝐾 ∈ ( TopOn ‘ 𝑌 ) ∧ 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ) → 𝐹 : ∪ 𝐽 ⟶ 𝑌 ) | |
| 12 | 10 1 2 11 | syl3anc | ⊢ ( 𝜑 → 𝐹 : ∪ 𝐽 ⟶ 𝑌 ) |
| 13 | 12 | ffnd | ⊢ ( 𝜑 → 𝐹 Fn ∪ 𝐽 ) |
| 14 | df-fo | ⊢ ( 𝐹 : ∪ 𝐽 –onto→ 𝑌 ↔ ( 𝐹 Fn ∪ 𝐽 ∧ ran 𝐹 = 𝑌 ) ) | |
| 15 | 13 3 14 | sylanbrc | ⊢ ( 𝜑 → 𝐹 : ∪ 𝐽 –onto→ 𝑌 ) |
| 16 | elqtop3 | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ ∪ 𝐽 ) ∧ 𝐹 : ∪ 𝐽 –onto→ 𝑌 ) → ( 𝑦 ∈ ( 𝐽 qTop 𝐹 ) ↔ ( 𝑦 ⊆ 𝑌 ∧ ( ◡ 𝐹 “ 𝑦 ) ∈ 𝐽 ) ) ) | |
| 17 | 10 15 16 | syl2anc | ⊢ ( 𝜑 → ( 𝑦 ∈ ( 𝐽 qTop 𝐹 ) ↔ ( 𝑦 ⊆ 𝑌 ∧ ( ◡ 𝐹 “ 𝑦 ) ∈ 𝐽 ) ) ) |
| 18 | foimacnv | ⊢ ( ( 𝐹 : ∪ 𝐽 –onto→ 𝑌 ∧ 𝑦 ⊆ 𝑌 ) → ( 𝐹 “ ( ◡ 𝐹 “ 𝑦 ) ) = 𝑦 ) | |
| 19 | 15 18 | sylan | ⊢ ( ( 𝜑 ∧ 𝑦 ⊆ 𝑌 ) → ( 𝐹 “ ( ◡ 𝐹 “ 𝑦 ) ) = 𝑦 ) |
| 20 | 19 | adantrr | ⊢ ( ( 𝜑 ∧ ( 𝑦 ⊆ 𝑌 ∧ ( ◡ 𝐹 “ 𝑦 ) ∈ 𝐽 ) ) → ( 𝐹 “ ( ◡ 𝐹 “ 𝑦 ) ) = 𝑦 ) |
| 21 | imaeq2 | ⊢ ( 𝑥 = ( ◡ 𝐹 “ 𝑦 ) → ( 𝐹 “ 𝑥 ) = ( 𝐹 “ ( ◡ 𝐹 “ 𝑦 ) ) ) | |
| 22 | 21 | eleq1d | ⊢ ( 𝑥 = ( ◡ 𝐹 “ 𝑦 ) → ( ( 𝐹 “ 𝑥 ) ∈ 𝐾 ↔ ( 𝐹 “ ( ◡ 𝐹 “ 𝑦 ) ) ∈ 𝐾 ) ) |
| 23 | 4 | ralrimiva | ⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐽 ( 𝐹 “ 𝑥 ) ∈ 𝐾 ) |
| 24 | 23 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑦 ⊆ 𝑌 ∧ ( ◡ 𝐹 “ 𝑦 ) ∈ 𝐽 ) ) → ∀ 𝑥 ∈ 𝐽 ( 𝐹 “ 𝑥 ) ∈ 𝐾 ) |
| 25 | simprr | ⊢ ( ( 𝜑 ∧ ( 𝑦 ⊆ 𝑌 ∧ ( ◡ 𝐹 “ 𝑦 ) ∈ 𝐽 ) ) → ( ◡ 𝐹 “ 𝑦 ) ∈ 𝐽 ) | |
| 26 | 22 24 25 | rspcdva | ⊢ ( ( 𝜑 ∧ ( 𝑦 ⊆ 𝑌 ∧ ( ◡ 𝐹 “ 𝑦 ) ∈ 𝐽 ) ) → ( 𝐹 “ ( ◡ 𝐹 “ 𝑦 ) ) ∈ 𝐾 ) |
| 27 | 20 26 | eqeltrrd | ⊢ ( ( 𝜑 ∧ ( 𝑦 ⊆ 𝑌 ∧ ( ◡ 𝐹 “ 𝑦 ) ∈ 𝐽 ) ) → 𝑦 ∈ 𝐾 ) |
| 28 | 27 | ex | ⊢ ( 𝜑 → ( ( 𝑦 ⊆ 𝑌 ∧ ( ◡ 𝐹 “ 𝑦 ) ∈ 𝐽 ) → 𝑦 ∈ 𝐾 ) ) |
| 29 | 17 28 | sylbid | ⊢ ( 𝜑 → ( 𝑦 ∈ ( 𝐽 qTop 𝐹 ) → 𝑦 ∈ 𝐾 ) ) |
| 30 | 29 | ssrdv | ⊢ ( 𝜑 → ( 𝐽 qTop 𝐹 ) ⊆ 𝐾 ) |
| 31 | 6 30 | eqssd | ⊢ ( 𝜑 → 𝐾 = ( 𝐽 qTop 𝐹 ) ) |