This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An image under the converse of a restriction. (Contributed by Jeff Hankins, 12-Jul-2009)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | cnvresima | ⊢ ( ◡ ( 𝐹 ↾ 𝐴 ) “ 𝐵 ) = ( ( ◡ 𝐹 “ 𝐵 ) ∩ 𝐴 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 19.41v | ⊢ ( ∃ 𝑠 ( ( 𝑠 ∈ 𝐵 ∧ 〈 𝑠 , 𝑡 〉 ∈ ◡ 𝐹 ) ∧ 𝑡 ∈ 𝐴 ) ↔ ( ∃ 𝑠 ( 𝑠 ∈ 𝐵 ∧ 〈 𝑠 , 𝑡 〉 ∈ ◡ 𝐹 ) ∧ 𝑡 ∈ 𝐴 ) ) | |
| 2 | vex | ⊢ 𝑠 ∈ V | |
| 3 | 2 | opelresi | ⊢ ( 〈 𝑡 , 𝑠 〉 ∈ ( 𝐹 ↾ 𝐴 ) ↔ ( 𝑡 ∈ 𝐴 ∧ 〈 𝑡 , 𝑠 〉 ∈ 𝐹 ) ) |
| 4 | vex | ⊢ 𝑡 ∈ V | |
| 5 | 2 4 | opelcnv | ⊢ ( 〈 𝑠 , 𝑡 〉 ∈ ◡ ( 𝐹 ↾ 𝐴 ) ↔ 〈 𝑡 , 𝑠 〉 ∈ ( 𝐹 ↾ 𝐴 ) ) |
| 6 | 2 4 | opelcnv | ⊢ ( 〈 𝑠 , 𝑡 〉 ∈ ◡ 𝐹 ↔ 〈 𝑡 , 𝑠 〉 ∈ 𝐹 ) |
| 7 | 6 | anbi2ci | ⊢ ( ( 〈 𝑠 , 𝑡 〉 ∈ ◡ 𝐹 ∧ 𝑡 ∈ 𝐴 ) ↔ ( 𝑡 ∈ 𝐴 ∧ 〈 𝑡 , 𝑠 〉 ∈ 𝐹 ) ) |
| 8 | 3 5 7 | 3bitr4i | ⊢ ( 〈 𝑠 , 𝑡 〉 ∈ ◡ ( 𝐹 ↾ 𝐴 ) ↔ ( 〈 𝑠 , 𝑡 〉 ∈ ◡ 𝐹 ∧ 𝑡 ∈ 𝐴 ) ) |
| 9 | 8 | bianass | ⊢ ( ( 𝑠 ∈ 𝐵 ∧ 〈 𝑠 , 𝑡 〉 ∈ ◡ ( 𝐹 ↾ 𝐴 ) ) ↔ ( ( 𝑠 ∈ 𝐵 ∧ 〈 𝑠 , 𝑡 〉 ∈ ◡ 𝐹 ) ∧ 𝑡 ∈ 𝐴 ) ) |
| 10 | 9 | exbii | ⊢ ( ∃ 𝑠 ( 𝑠 ∈ 𝐵 ∧ 〈 𝑠 , 𝑡 〉 ∈ ◡ ( 𝐹 ↾ 𝐴 ) ) ↔ ∃ 𝑠 ( ( 𝑠 ∈ 𝐵 ∧ 〈 𝑠 , 𝑡 〉 ∈ ◡ 𝐹 ) ∧ 𝑡 ∈ 𝐴 ) ) |
| 11 | 4 | elima3 | ⊢ ( 𝑡 ∈ ( ◡ 𝐹 “ 𝐵 ) ↔ ∃ 𝑠 ( 𝑠 ∈ 𝐵 ∧ 〈 𝑠 , 𝑡 〉 ∈ ◡ 𝐹 ) ) |
| 12 | 11 | anbi1i | ⊢ ( ( 𝑡 ∈ ( ◡ 𝐹 “ 𝐵 ) ∧ 𝑡 ∈ 𝐴 ) ↔ ( ∃ 𝑠 ( 𝑠 ∈ 𝐵 ∧ 〈 𝑠 , 𝑡 〉 ∈ ◡ 𝐹 ) ∧ 𝑡 ∈ 𝐴 ) ) |
| 13 | 1 10 12 | 3bitr4i | ⊢ ( ∃ 𝑠 ( 𝑠 ∈ 𝐵 ∧ 〈 𝑠 , 𝑡 〉 ∈ ◡ ( 𝐹 ↾ 𝐴 ) ) ↔ ( 𝑡 ∈ ( ◡ 𝐹 “ 𝐵 ) ∧ 𝑡 ∈ 𝐴 ) ) |
| 14 | 4 | elima3 | ⊢ ( 𝑡 ∈ ( ◡ ( 𝐹 ↾ 𝐴 ) “ 𝐵 ) ↔ ∃ 𝑠 ( 𝑠 ∈ 𝐵 ∧ 〈 𝑠 , 𝑡 〉 ∈ ◡ ( 𝐹 ↾ 𝐴 ) ) ) |
| 15 | elin | ⊢ ( 𝑡 ∈ ( ( ◡ 𝐹 “ 𝐵 ) ∩ 𝐴 ) ↔ ( 𝑡 ∈ ( ◡ 𝐹 “ 𝐵 ) ∧ 𝑡 ∈ 𝐴 ) ) | |
| 16 | 13 14 15 | 3bitr4i | ⊢ ( 𝑡 ∈ ( ◡ ( 𝐹 ↾ 𝐴 ) “ 𝐵 ) ↔ 𝑡 ∈ ( ( ◡ 𝐹 “ 𝐵 ) ∩ 𝐴 ) ) |
| 17 | 16 | eqriv | ⊢ ( ◡ ( 𝐹 ↾ 𝐴 ) “ 𝐵 ) = ( ( ◡ 𝐹 “ 𝐵 ) ∩ 𝐴 ) |