This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If A is a saturated open or closed set (where saturated means that A = (`' F " U ) for some U ), then the restriction of the quotient map F to A ` is a quotient map. (Contributed by Mario Carneiro, 24-Mar-2015) (Revised by Mario Carneiro, 22-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | qtoprest.2 | |- ( ph -> J e. ( TopOn ` X ) ) |
|
| qtoprest.3 | |- ( ph -> F : X -onto-> Y ) |
||
| qtoprest.4 | |- ( ph -> U C_ Y ) |
||
| qtoprest.5 | |- ( ph -> A = ( `' F " U ) ) |
||
| qtoprest.6 | |- ( ph -> ( A e. J \/ A e. ( Clsd ` J ) ) ) |
||
| Assertion | qtoprest | |- ( ph -> ( ( J qTop F ) |`t U ) = ( ( J |`t A ) qTop ( F |` A ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | qtoprest.2 | |- ( ph -> J e. ( TopOn ` X ) ) |
|
| 2 | qtoprest.3 | |- ( ph -> F : X -onto-> Y ) |
|
| 3 | qtoprest.4 | |- ( ph -> U C_ Y ) |
|
| 4 | qtoprest.5 | |- ( ph -> A = ( `' F " U ) ) |
|
| 5 | qtoprest.6 | |- ( ph -> ( A e. J \/ A e. ( Clsd ` J ) ) ) |
|
| 6 | fofn | |- ( F : X -onto-> Y -> F Fn X ) |
|
| 7 | 2 6 | syl | |- ( ph -> F Fn X ) |
| 8 | qtopid | |- ( ( J e. ( TopOn ` X ) /\ F Fn X ) -> F e. ( J Cn ( J qTop F ) ) ) |
|
| 9 | 1 7 8 | syl2anc | |- ( ph -> F e. ( J Cn ( J qTop F ) ) ) |
| 10 | cnvimass | |- ( `' F " U ) C_ dom F |
|
| 11 | 7 | fndmd | |- ( ph -> dom F = X ) |
| 12 | 10 11 | sseqtrid | |- ( ph -> ( `' F " U ) C_ X ) |
| 13 | 4 12 | eqsstrd | |- ( ph -> A C_ X ) |
| 14 | toponuni | |- ( J e. ( TopOn ` X ) -> X = U. J ) |
|
| 15 | 1 14 | syl | |- ( ph -> X = U. J ) |
| 16 | 13 15 | sseqtrd | |- ( ph -> A C_ U. J ) |
| 17 | eqid | |- U. J = U. J |
|
| 18 | 17 | cnrest | |- ( ( F e. ( J Cn ( J qTop F ) ) /\ A C_ U. J ) -> ( F |` A ) e. ( ( J |`t A ) Cn ( J qTop F ) ) ) |
| 19 | 9 16 18 | syl2anc | |- ( ph -> ( F |` A ) e. ( ( J |`t A ) Cn ( J qTop F ) ) ) |
| 20 | qtoptopon | |- ( ( J e. ( TopOn ` X ) /\ F : X -onto-> Y ) -> ( J qTop F ) e. ( TopOn ` Y ) ) |
|
| 21 | 1 2 20 | syl2anc | |- ( ph -> ( J qTop F ) e. ( TopOn ` Y ) ) |
| 22 | df-ima | |- ( F " A ) = ran ( F |` A ) |
|
| 23 | 4 | imaeq2d | |- ( ph -> ( F " A ) = ( F " ( `' F " U ) ) ) |
| 24 | foimacnv | |- ( ( F : X -onto-> Y /\ U C_ Y ) -> ( F " ( `' F " U ) ) = U ) |
|
| 25 | 2 3 24 | syl2anc | |- ( ph -> ( F " ( `' F " U ) ) = U ) |
| 26 | 23 25 | eqtrd | |- ( ph -> ( F " A ) = U ) |
| 27 | 22 26 | eqtr3id | |- ( ph -> ran ( F |` A ) = U ) |
| 28 | eqimss | |- ( ran ( F |` A ) = U -> ran ( F |` A ) C_ U ) |
|
| 29 | 27 28 | syl | |- ( ph -> ran ( F |` A ) C_ U ) |
| 30 | cnrest2 | |- ( ( ( J qTop F ) e. ( TopOn ` Y ) /\ ran ( F |` A ) C_ U /\ U C_ Y ) -> ( ( F |` A ) e. ( ( J |`t A ) Cn ( J qTop F ) ) <-> ( F |` A ) e. ( ( J |`t A ) Cn ( ( J qTop F ) |`t U ) ) ) ) |
|
| 31 | 21 29 3 30 | syl3anc | |- ( ph -> ( ( F |` A ) e. ( ( J |`t A ) Cn ( J qTop F ) ) <-> ( F |` A ) e. ( ( J |`t A ) Cn ( ( J qTop F ) |`t U ) ) ) ) |
| 32 | 19 31 | mpbid | |- ( ph -> ( F |` A ) e. ( ( J |`t A ) Cn ( ( J qTop F ) |`t U ) ) ) |
| 33 | resttopon | |- ( ( ( J qTop F ) e. ( TopOn ` Y ) /\ U C_ Y ) -> ( ( J qTop F ) |`t U ) e. ( TopOn ` U ) ) |
|
| 34 | 21 3 33 | syl2anc | |- ( ph -> ( ( J qTop F ) |`t U ) e. ( TopOn ` U ) ) |
| 35 | qtopss | |- ( ( ( F |` A ) e. ( ( J |`t A ) Cn ( ( J qTop F ) |`t U ) ) /\ ( ( J qTop F ) |`t U ) e. ( TopOn ` U ) /\ ran ( F |` A ) = U ) -> ( ( J qTop F ) |`t U ) C_ ( ( J |`t A ) qTop ( F |` A ) ) ) |
|
| 36 | 32 34 27 35 | syl3anc | |- ( ph -> ( ( J qTop F ) |`t U ) C_ ( ( J |`t A ) qTop ( F |` A ) ) ) |
| 37 | resttopon | |- ( ( J e. ( TopOn ` X ) /\ A C_ X ) -> ( J |`t A ) e. ( TopOn ` A ) ) |
|
| 38 | 1 13 37 | syl2anc | |- ( ph -> ( J |`t A ) e. ( TopOn ` A ) ) |
| 39 | fnfun | |- ( F Fn X -> Fun F ) |
|
| 40 | 7 39 | syl | |- ( ph -> Fun F ) |
| 41 | 13 11 | sseqtrrd | |- ( ph -> A C_ dom F ) |
| 42 | fores | |- ( ( Fun F /\ A C_ dom F ) -> ( F |` A ) : A -onto-> ( F " A ) ) |
|
| 43 | 40 41 42 | syl2anc | |- ( ph -> ( F |` A ) : A -onto-> ( F " A ) ) |
| 44 | foeq3 | |- ( ( F " A ) = U -> ( ( F |` A ) : A -onto-> ( F " A ) <-> ( F |` A ) : A -onto-> U ) ) |
|
| 45 | 26 44 | syl | |- ( ph -> ( ( F |` A ) : A -onto-> ( F " A ) <-> ( F |` A ) : A -onto-> U ) ) |
| 46 | 43 45 | mpbid | |- ( ph -> ( F |` A ) : A -onto-> U ) |
| 47 | elqtop3 | |- ( ( ( J |`t A ) e. ( TopOn ` A ) /\ ( F |` A ) : A -onto-> U ) -> ( x e. ( ( J |`t A ) qTop ( F |` A ) ) <-> ( x C_ U /\ ( `' ( F |` A ) " x ) e. ( J |`t A ) ) ) ) |
|
| 48 | 38 46 47 | syl2anc | |- ( ph -> ( x e. ( ( J |`t A ) qTop ( F |` A ) ) <-> ( x C_ U /\ ( `' ( F |` A ) " x ) e. ( J |`t A ) ) ) ) |
| 49 | cnvresima | |- ( `' ( F |` A ) " x ) = ( ( `' F " x ) i^i A ) |
|
| 50 | imass2 | |- ( x C_ U -> ( `' F " x ) C_ ( `' F " U ) ) |
|
| 51 | 50 | adantl | |- ( ( ph /\ x C_ U ) -> ( `' F " x ) C_ ( `' F " U ) ) |
| 52 | 4 | adantr | |- ( ( ph /\ x C_ U ) -> A = ( `' F " U ) ) |
| 53 | 51 52 | sseqtrrd | |- ( ( ph /\ x C_ U ) -> ( `' F " x ) C_ A ) |
| 54 | dfss2 | |- ( ( `' F " x ) C_ A <-> ( ( `' F " x ) i^i A ) = ( `' F " x ) ) |
|
| 55 | 53 54 | sylib | |- ( ( ph /\ x C_ U ) -> ( ( `' F " x ) i^i A ) = ( `' F " x ) ) |
| 56 | 49 55 | eqtrid | |- ( ( ph /\ x C_ U ) -> ( `' ( F |` A ) " x ) = ( `' F " x ) ) |
| 57 | 56 | eleq1d | |- ( ( ph /\ x C_ U ) -> ( ( `' ( F |` A ) " x ) e. ( J |`t A ) <-> ( `' F " x ) e. ( J |`t A ) ) ) |
| 58 | simplrl | |- ( ( ( ph /\ ( x C_ U /\ ( `' F " x ) e. ( J |`t A ) ) ) /\ A e. J ) -> x C_ U ) |
|
| 59 | dfss2 | |- ( x C_ U <-> ( x i^i U ) = x ) |
|
| 60 | 58 59 | sylib | |- ( ( ( ph /\ ( x C_ U /\ ( `' F " x ) e. ( J |`t A ) ) ) /\ A e. J ) -> ( x i^i U ) = x ) |
| 61 | topontop | |- ( ( J qTop F ) e. ( TopOn ` Y ) -> ( J qTop F ) e. Top ) |
|
| 62 | 21 61 | syl | |- ( ph -> ( J qTop F ) e. Top ) |
| 63 | 62 | ad2antrr | |- ( ( ( ph /\ ( x C_ U /\ ( `' F " x ) e. ( J |`t A ) ) ) /\ A e. J ) -> ( J qTop F ) e. Top ) |
| 64 | toponmax | |- ( J e. ( TopOn ` X ) -> X e. J ) |
|
| 65 | 1 64 | syl | |- ( ph -> X e. J ) |
| 66 | focdmex | |- ( X e. J -> ( F : X -onto-> Y -> Y e. _V ) ) |
|
| 67 | 65 2 66 | sylc | |- ( ph -> Y e. _V ) |
| 68 | 67 3 | ssexd | |- ( ph -> U e. _V ) |
| 69 | 68 | ad2antrr | |- ( ( ( ph /\ ( x C_ U /\ ( `' F " x ) e. ( J |`t A ) ) ) /\ A e. J ) -> U e. _V ) |
| 70 | 3 | ad2antrr | |- ( ( ( ph /\ ( x C_ U /\ ( `' F " x ) e. ( J |`t A ) ) ) /\ A e. J ) -> U C_ Y ) |
| 71 | 58 70 | sstrd | |- ( ( ( ph /\ ( x C_ U /\ ( `' F " x ) e. ( J |`t A ) ) ) /\ A e. J ) -> x C_ Y ) |
| 72 | topontop | |- ( J e. ( TopOn ` X ) -> J e. Top ) |
|
| 73 | 1 72 | syl | |- ( ph -> J e. Top ) |
| 74 | restopn2 | |- ( ( J e. Top /\ A e. J ) -> ( ( `' F " x ) e. ( J |`t A ) <-> ( ( `' F " x ) e. J /\ ( `' F " x ) C_ A ) ) ) |
|
| 75 | 73 74 | sylan | |- ( ( ph /\ A e. J ) -> ( ( `' F " x ) e. ( J |`t A ) <-> ( ( `' F " x ) e. J /\ ( `' F " x ) C_ A ) ) ) |
| 76 | 75 | simprbda | |- ( ( ( ph /\ A e. J ) /\ ( `' F " x ) e. ( J |`t A ) ) -> ( `' F " x ) e. J ) |
| 77 | 76 | adantrl | |- ( ( ( ph /\ A e. J ) /\ ( x C_ U /\ ( `' F " x ) e. ( J |`t A ) ) ) -> ( `' F " x ) e. J ) |
| 78 | 77 | an32s | |- ( ( ( ph /\ ( x C_ U /\ ( `' F " x ) e. ( J |`t A ) ) ) /\ A e. J ) -> ( `' F " x ) e. J ) |
| 79 | elqtop3 | |- ( ( J e. ( TopOn ` X ) /\ F : X -onto-> Y ) -> ( x e. ( J qTop F ) <-> ( x C_ Y /\ ( `' F " x ) e. J ) ) ) |
|
| 80 | 1 2 79 | syl2anc | |- ( ph -> ( x e. ( J qTop F ) <-> ( x C_ Y /\ ( `' F " x ) e. J ) ) ) |
| 81 | 80 | ad2antrr | |- ( ( ( ph /\ ( x C_ U /\ ( `' F " x ) e. ( J |`t A ) ) ) /\ A e. J ) -> ( x e. ( J qTop F ) <-> ( x C_ Y /\ ( `' F " x ) e. J ) ) ) |
| 82 | 71 78 81 | mpbir2and | |- ( ( ( ph /\ ( x C_ U /\ ( `' F " x ) e. ( J |`t A ) ) ) /\ A e. J ) -> x e. ( J qTop F ) ) |
| 83 | elrestr | |- ( ( ( J qTop F ) e. Top /\ U e. _V /\ x e. ( J qTop F ) ) -> ( x i^i U ) e. ( ( J qTop F ) |`t U ) ) |
|
| 84 | 63 69 82 83 | syl3anc | |- ( ( ( ph /\ ( x C_ U /\ ( `' F " x ) e. ( J |`t A ) ) ) /\ A e. J ) -> ( x i^i U ) e. ( ( J qTop F ) |`t U ) ) |
| 85 | 60 84 | eqeltrrd | |- ( ( ( ph /\ ( x C_ U /\ ( `' F " x ) e. ( J |`t A ) ) ) /\ A e. J ) -> x e. ( ( J qTop F ) |`t U ) ) |
| 86 | 34 | ad2antrr | |- ( ( ( ph /\ ( x C_ U /\ ( `' F " x ) e. ( J |`t A ) ) ) /\ A e. ( Clsd ` J ) ) -> ( ( J qTop F ) |`t U ) e. ( TopOn ` U ) ) |
| 87 | toponuni | |- ( ( ( J qTop F ) |`t U ) e. ( TopOn ` U ) -> U = U. ( ( J qTop F ) |`t U ) ) |
|
| 88 | 86 87 | syl | |- ( ( ( ph /\ ( x C_ U /\ ( `' F " x ) e. ( J |`t A ) ) ) /\ A e. ( Clsd ` J ) ) -> U = U. ( ( J qTop F ) |`t U ) ) |
| 89 | 88 | difeq1d | |- ( ( ( ph /\ ( x C_ U /\ ( `' F " x ) e. ( J |`t A ) ) ) /\ A e. ( Clsd ` J ) ) -> ( U \ x ) = ( U. ( ( J qTop F ) |`t U ) \ x ) ) |
| 90 | 3 | ad2antrr | |- ( ( ( ph /\ ( x C_ U /\ ( `' F " x ) e. ( J |`t A ) ) ) /\ A e. ( Clsd ` J ) ) -> U C_ Y ) |
| 91 | 21 | ad2antrr | |- ( ( ( ph /\ ( x C_ U /\ ( `' F " x ) e. ( J |`t A ) ) ) /\ A e. ( Clsd ` J ) ) -> ( J qTop F ) e. ( TopOn ` Y ) ) |
| 92 | toponuni | |- ( ( J qTop F ) e. ( TopOn ` Y ) -> Y = U. ( J qTop F ) ) |
|
| 93 | 91 92 | syl | |- ( ( ( ph /\ ( x C_ U /\ ( `' F " x ) e. ( J |`t A ) ) ) /\ A e. ( Clsd ` J ) ) -> Y = U. ( J qTop F ) ) |
| 94 | 90 93 | sseqtrd | |- ( ( ( ph /\ ( x C_ U /\ ( `' F " x ) e. ( J |`t A ) ) ) /\ A e. ( Clsd ` J ) ) -> U C_ U. ( J qTop F ) ) |
| 95 | 90 | ssdifssd | |- ( ( ( ph /\ ( x C_ U /\ ( `' F " x ) e. ( J |`t A ) ) ) /\ A e. ( Clsd ` J ) ) -> ( U \ x ) C_ Y ) |
| 96 | 40 | ad2antrr | |- ( ( ( ph /\ ( x C_ U /\ ( `' F " x ) e. ( J |`t A ) ) ) /\ A e. ( Clsd ` J ) ) -> Fun F ) |
| 97 | funcnvcnv | |- ( Fun F -> Fun `' `' F ) |
|
| 98 | imadif | |- ( Fun `' `' F -> ( `' F " ( U \ x ) ) = ( ( `' F " U ) \ ( `' F " x ) ) ) |
|
| 99 | 96 97 98 | 3syl | |- ( ( ( ph /\ ( x C_ U /\ ( `' F " x ) e. ( J |`t A ) ) ) /\ A e. ( Clsd ` J ) ) -> ( `' F " ( U \ x ) ) = ( ( `' F " U ) \ ( `' F " x ) ) ) |
| 100 | 4 | ad2antrr | |- ( ( ( ph /\ ( x C_ U /\ ( `' F " x ) e. ( J |`t A ) ) ) /\ A e. ( Clsd ` J ) ) -> A = ( `' F " U ) ) |
| 101 | 100 | difeq1d | |- ( ( ( ph /\ ( x C_ U /\ ( `' F " x ) e. ( J |`t A ) ) ) /\ A e. ( Clsd ` J ) ) -> ( A \ ( `' F " x ) ) = ( ( `' F " U ) \ ( `' F " x ) ) ) |
| 102 | 99 101 | eqtr4d | |- ( ( ( ph /\ ( x C_ U /\ ( `' F " x ) e. ( J |`t A ) ) ) /\ A e. ( Clsd ` J ) ) -> ( `' F " ( U \ x ) ) = ( A \ ( `' F " x ) ) ) |
| 103 | simpr | |- ( ( ( ph /\ ( x C_ U /\ ( `' F " x ) e. ( J |`t A ) ) ) /\ A e. ( Clsd ` J ) ) -> A e. ( Clsd ` J ) ) |
|
| 104 | 38 | ad2antrr | |- ( ( ( ph /\ ( x C_ U /\ ( `' F " x ) e. ( J |`t A ) ) ) /\ A e. ( Clsd ` J ) ) -> ( J |`t A ) e. ( TopOn ` A ) ) |
| 105 | toponuni | |- ( ( J |`t A ) e. ( TopOn ` A ) -> A = U. ( J |`t A ) ) |
|
| 106 | 104 105 | syl | |- ( ( ( ph /\ ( x C_ U /\ ( `' F " x ) e. ( J |`t A ) ) ) /\ A e. ( Clsd ` J ) ) -> A = U. ( J |`t A ) ) |
| 107 | 106 | difeq1d | |- ( ( ( ph /\ ( x C_ U /\ ( `' F " x ) e. ( J |`t A ) ) ) /\ A e. ( Clsd ` J ) ) -> ( A \ ( `' F " x ) ) = ( U. ( J |`t A ) \ ( `' F " x ) ) ) |
| 108 | topontop | |- ( ( J |`t A ) e. ( TopOn ` A ) -> ( J |`t A ) e. Top ) |
|
| 109 | 104 108 | syl | |- ( ( ( ph /\ ( x C_ U /\ ( `' F " x ) e. ( J |`t A ) ) ) /\ A e. ( Clsd ` J ) ) -> ( J |`t A ) e. Top ) |
| 110 | simplrr | |- ( ( ( ph /\ ( x C_ U /\ ( `' F " x ) e. ( J |`t A ) ) ) /\ A e. ( Clsd ` J ) ) -> ( `' F " x ) e. ( J |`t A ) ) |
|
| 111 | eqid | |- U. ( J |`t A ) = U. ( J |`t A ) |
|
| 112 | 111 | opncld | |- ( ( ( J |`t A ) e. Top /\ ( `' F " x ) e. ( J |`t A ) ) -> ( U. ( J |`t A ) \ ( `' F " x ) ) e. ( Clsd ` ( J |`t A ) ) ) |
| 113 | 109 110 112 | syl2anc | |- ( ( ( ph /\ ( x C_ U /\ ( `' F " x ) e. ( J |`t A ) ) ) /\ A e. ( Clsd ` J ) ) -> ( U. ( J |`t A ) \ ( `' F " x ) ) e. ( Clsd ` ( J |`t A ) ) ) |
| 114 | 107 113 | eqeltrd | |- ( ( ( ph /\ ( x C_ U /\ ( `' F " x ) e. ( J |`t A ) ) ) /\ A e. ( Clsd ` J ) ) -> ( A \ ( `' F " x ) ) e. ( Clsd ` ( J |`t A ) ) ) |
| 115 | restcldr | |- ( ( A e. ( Clsd ` J ) /\ ( A \ ( `' F " x ) ) e. ( Clsd ` ( J |`t A ) ) ) -> ( A \ ( `' F " x ) ) e. ( Clsd ` J ) ) |
|
| 116 | 103 114 115 | syl2anc | |- ( ( ( ph /\ ( x C_ U /\ ( `' F " x ) e. ( J |`t A ) ) ) /\ A e. ( Clsd ` J ) ) -> ( A \ ( `' F " x ) ) e. ( Clsd ` J ) ) |
| 117 | 102 116 | eqeltrd | |- ( ( ( ph /\ ( x C_ U /\ ( `' F " x ) e. ( J |`t A ) ) ) /\ A e. ( Clsd ` J ) ) -> ( `' F " ( U \ x ) ) e. ( Clsd ` J ) ) |
| 118 | qtopcld | |- ( ( J e. ( TopOn ` X ) /\ F : X -onto-> Y ) -> ( ( U \ x ) e. ( Clsd ` ( J qTop F ) ) <-> ( ( U \ x ) C_ Y /\ ( `' F " ( U \ x ) ) e. ( Clsd ` J ) ) ) ) |
|
| 119 | 1 2 118 | syl2anc | |- ( ph -> ( ( U \ x ) e. ( Clsd ` ( J qTop F ) ) <-> ( ( U \ x ) C_ Y /\ ( `' F " ( U \ x ) ) e. ( Clsd ` J ) ) ) ) |
| 120 | 119 | ad2antrr | |- ( ( ( ph /\ ( x C_ U /\ ( `' F " x ) e. ( J |`t A ) ) ) /\ A e. ( Clsd ` J ) ) -> ( ( U \ x ) e. ( Clsd ` ( J qTop F ) ) <-> ( ( U \ x ) C_ Y /\ ( `' F " ( U \ x ) ) e. ( Clsd ` J ) ) ) ) |
| 121 | 95 117 120 | mpbir2and | |- ( ( ( ph /\ ( x C_ U /\ ( `' F " x ) e. ( J |`t A ) ) ) /\ A e. ( Clsd ` J ) ) -> ( U \ x ) e. ( Clsd ` ( J qTop F ) ) ) |
| 122 | difssd | |- ( ( ( ph /\ ( x C_ U /\ ( `' F " x ) e. ( J |`t A ) ) ) /\ A e. ( Clsd ` J ) ) -> ( U \ x ) C_ U ) |
|
| 123 | eqid | |- U. ( J qTop F ) = U. ( J qTop F ) |
|
| 124 | 123 | restcldi | |- ( ( U C_ U. ( J qTop F ) /\ ( U \ x ) e. ( Clsd ` ( J qTop F ) ) /\ ( U \ x ) C_ U ) -> ( U \ x ) e. ( Clsd ` ( ( J qTop F ) |`t U ) ) ) |
| 125 | 94 121 122 124 | syl3anc | |- ( ( ( ph /\ ( x C_ U /\ ( `' F " x ) e. ( J |`t A ) ) ) /\ A e. ( Clsd ` J ) ) -> ( U \ x ) e. ( Clsd ` ( ( J qTop F ) |`t U ) ) ) |
| 126 | 89 125 | eqeltrrd | |- ( ( ( ph /\ ( x C_ U /\ ( `' F " x ) e. ( J |`t A ) ) ) /\ A e. ( Clsd ` J ) ) -> ( U. ( ( J qTop F ) |`t U ) \ x ) e. ( Clsd ` ( ( J qTop F ) |`t U ) ) ) |
| 127 | topontop | |- ( ( ( J qTop F ) |`t U ) e. ( TopOn ` U ) -> ( ( J qTop F ) |`t U ) e. Top ) |
|
| 128 | 86 127 | syl | |- ( ( ( ph /\ ( x C_ U /\ ( `' F " x ) e. ( J |`t A ) ) ) /\ A e. ( Clsd ` J ) ) -> ( ( J qTop F ) |`t U ) e. Top ) |
| 129 | simplrl | |- ( ( ( ph /\ ( x C_ U /\ ( `' F " x ) e. ( J |`t A ) ) ) /\ A e. ( Clsd ` J ) ) -> x C_ U ) |
|
| 130 | 129 88 | sseqtrd | |- ( ( ( ph /\ ( x C_ U /\ ( `' F " x ) e. ( J |`t A ) ) ) /\ A e. ( Clsd ` J ) ) -> x C_ U. ( ( J qTop F ) |`t U ) ) |
| 131 | eqid | |- U. ( ( J qTop F ) |`t U ) = U. ( ( J qTop F ) |`t U ) |
|
| 132 | 131 | isopn2 | |- ( ( ( ( J qTop F ) |`t U ) e. Top /\ x C_ U. ( ( J qTop F ) |`t U ) ) -> ( x e. ( ( J qTop F ) |`t U ) <-> ( U. ( ( J qTop F ) |`t U ) \ x ) e. ( Clsd ` ( ( J qTop F ) |`t U ) ) ) ) |
| 133 | 128 130 132 | syl2anc | |- ( ( ( ph /\ ( x C_ U /\ ( `' F " x ) e. ( J |`t A ) ) ) /\ A e. ( Clsd ` J ) ) -> ( x e. ( ( J qTop F ) |`t U ) <-> ( U. ( ( J qTop F ) |`t U ) \ x ) e. ( Clsd ` ( ( J qTop F ) |`t U ) ) ) ) |
| 134 | 126 133 | mpbird | |- ( ( ( ph /\ ( x C_ U /\ ( `' F " x ) e. ( J |`t A ) ) ) /\ A e. ( Clsd ` J ) ) -> x e. ( ( J qTop F ) |`t U ) ) |
| 135 | 5 | adantr | |- ( ( ph /\ ( x C_ U /\ ( `' F " x ) e. ( J |`t A ) ) ) -> ( A e. J \/ A e. ( Clsd ` J ) ) ) |
| 136 | 85 134 135 | mpjaodan | |- ( ( ph /\ ( x C_ U /\ ( `' F " x ) e. ( J |`t A ) ) ) -> x e. ( ( J qTop F ) |`t U ) ) |
| 137 | 136 | expr | |- ( ( ph /\ x C_ U ) -> ( ( `' F " x ) e. ( J |`t A ) -> x e. ( ( J qTop F ) |`t U ) ) ) |
| 138 | 57 137 | sylbid | |- ( ( ph /\ x C_ U ) -> ( ( `' ( F |` A ) " x ) e. ( J |`t A ) -> x e. ( ( J qTop F ) |`t U ) ) ) |
| 139 | 138 | expimpd | |- ( ph -> ( ( x C_ U /\ ( `' ( F |` A ) " x ) e. ( J |`t A ) ) -> x e. ( ( J qTop F ) |`t U ) ) ) |
| 140 | 48 139 | sylbid | |- ( ph -> ( x e. ( ( J |`t A ) qTop ( F |` A ) ) -> x e. ( ( J qTop F ) |`t U ) ) ) |
| 141 | 140 | ssrdv | |- ( ph -> ( ( J |`t A ) qTop ( F |` A ) ) C_ ( ( J qTop F ) |`t U ) ) |
| 142 | 36 141 | eqssd | |- ( ph -> ( ( J qTop F ) |`t U ) = ( ( J |`t A ) qTop ( F |` A ) ) ) |