This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If A is open, then B is open in A iff it is an open subset of A . (Contributed by Mario Carneiro, 2-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | restopn2 | ⊢ ( ( 𝐽 ∈ Top ∧ 𝐴 ∈ 𝐽 ) → ( 𝐵 ∈ ( 𝐽 ↾t 𝐴 ) ↔ ( 𝐵 ∈ 𝐽 ∧ 𝐵 ⊆ 𝐴 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elssuni | ⊢ ( 𝐵 ∈ ( 𝐽 ↾t 𝐴 ) → 𝐵 ⊆ ∪ ( 𝐽 ↾t 𝐴 ) ) | |
| 2 | elssuni | ⊢ ( 𝐴 ∈ 𝐽 → 𝐴 ⊆ ∪ 𝐽 ) | |
| 3 | eqid | ⊢ ∪ 𝐽 = ∪ 𝐽 | |
| 4 | 3 | restuni | ⊢ ( ( 𝐽 ∈ Top ∧ 𝐴 ⊆ ∪ 𝐽 ) → 𝐴 = ∪ ( 𝐽 ↾t 𝐴 ) ) |
| 5 | 2 4 | sylan2 | ⊢ ( ( 𝐽 ∈ Top ∧ 𝐴 ∈ 𝐽 ) → 𝐴 = ∪ ( 𝐽 ↾t 𝐴 ) ) |
| 6 | 5 | sseq2d | ⊢ ( ( 𝐽 ∈ Top ∧ 𝐴 ∈ 𝐽 ) → ( 𝐵 ⊆ 𝐴 ↔ 𝐵 ⊆ ∪ ( 𝐽 ↾t 𝐴 ) ) ) |
| 7 | 1 6 | imbitrrid | ⊢ ( ( 𝐽 ∈ Top ∧ 𝐴 ∈ 𝐽 ) → ( 𝐵 ∈ ( 𝐽 ↾t 𝐴 ) → 𝐵 ⊆ 𝐴 ) ) |
| 8 | 7 | pm4.71rd | ⊢ ( ( 𝐽 ∈ Top ∧ 𝐴 ∈ 𝐽 ) → ( 𝐵 ∈ ( 𝐽 ↾t 𝐴 ) ↔ ( 𝐵 ⊆ 𝐴 ∧ 𝐵 ∈ ( 𝐽 ↾t 𝐴 ) ) ) ) |
| 9 | simpll | ⊢ ( ( ( 𝐽 ∈ Top ∧ 𝐴 ∈ 𝐽 ) ∧ 𝐵 ⊆ 𝐴 ) → 𝐽 ∈ Top ) | |
| 10 | simplr | ⊢ ( ( ( 𝐽 ∈ Top ∧ 𝐴 ∈ 𝐽 ) ∧ 𝐵 ⊆ 𝐴 ) → 𝐴 ∈ 𝐽 ) | |
| 11 | ssidd | ⊢ ( ( ( 𝐽 ∈ Top ∧ 𝐴 ∈ 𝐽 ) ∧ 𝐵 ⊆ 𝐴 ) → 𝐴 ⊆ 𝐴 ) | |
| 12 | simpr | ⊢ ( ( ( 𝐽 ∈ Top ∧ 𝐴 ∈ 𝐽 ) ∧ 𝐵 ⊆ 𝐴 ) → 𝐵 ⊆ 𝐴 ) | |
| 13 | restopnb | ⊢ ( ( ( 𝐽 ∈ Top ∧ 𝐴 ∈ 𝐽 ) ∧ ( 𝐴 ∈ 𝐽 ∧ 𝐴 ⊆ 𝐴 ∧ 𝐵 ⊆ 𝐴 ) ) → ( 𝐵 ∈ 𝐽 ↔ 𝐵 ∈ ( 𝐽 ↾t 𝐴 ) ) ) | |
| 14 | 9 10 10 11 12 13 | syl23anc | ⊢ ( ( ( 𝐽 ∈ Top ∧ 𝐴 ∈ 𝐽 ) ∧ 𝐵 ⊆ 𝐴 ) → ( 𝐵 ∈ 𝐽 ↔ 𝐵 ∈ ( 𝐽 ↾t 𝐴 ) ) ) |
| 15 | 14 | pm5.32da | ⊢ ( ( 𝐽 ∈ Top ∧ 𝐴 ∈ 𝐽 ) → ( ( 𝐵 ⊆ 𝐴 ∧ 𝐵 ∈ 𝐽 ) ↔ ( 𝐵 ⊆ 𝐴 ∧ 𝐵 ∈ ( 𝐽 ↾t 𝐴 ) ) ) ) |
| 16 | 8 15 | bitr4d | ⊢ ( ( 𝐽 ∈ Top ∧ 𝐴 ∈ 𝐽 ) → ( 𝐵 ∈ ( 𝐽 ↾t 𝐴 ) ↔ ( 𝐵 ⊆ 𝐴 ∧ 𝐵 ∈ 𝐽 ) ) ) |
| 17 | 16 | biancomd | ⊢ ( ( 𝐽 ∈ Top ∧ 𝐴 ∈ 𝐽 ) → ( 𝐵 ∈ ( 𝐽 ↾t 𝐴 ) ↔ ( 𝐵 ∈ 𝐽 ∧ 𝐵 ⊆ 𝐴 ) ) ) |