This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for domtriom . This is the equinumerosity version of the algebraic identity sum_ k e. n ( 2 ^ k ) = ( 2 ^ n ) - 1 . (Contributed by Mario Carneiro, 7-Feb-2013)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | pwsdompw | ⊢ ( ( 𝑛 ∈ ω ∧ ∀ 𝑘 ∈ suc 𝑛 ( 𝐵 ‘ 𝑘 ) ≈ 𝒫 𝑘 ) → ∪ 𝑘 ∈ 𝑛 ( 𝐵 ‘ 𝑘 ) ≺ ( 𝐵 ‘ 𝑛 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | suceq | ⊢ ( 𝑛 = ∅ → suc 𝑛 = suc ∅ ) | |
| 2 | 1 | raleqdv | ⊢ ( 𝑛 = ∅ → ( ∀ 𝑘 ∈ suc 𝑛 ( 𝐵 ‘ 𝑘 ) ≈ 𝒫 𝑘 ↔ ∀ 𝑘 ∈ suc ∅ ( 𝐵 ‘ 𝑘 ) ≈ 𝒫 𝑘 ) ) |
| 3 | iuneq1 | ⊢ ( 𝑛 = ∅ → ∪ 𝑘 ∈ 𝑛 ( 𝐵 ‘ 𝑘 ) = ∪ 𝑘 ∈ ∅ ( 𝐵 ‘ 𝑘 ) ) | |
| 4 | fveq2 | ⊢ ( 𝑛 = ∅ → ( 𝐵 ‘ 𝑛 ) = ( 𝐵 ‘ ∅ ) ) | |
| 5 | 3 4 | breq12d | ⊢ ( 𝑛 = ∅ → ( ∪ 𝑘 ∈ 𝑛 ( 𝐵 ‘ 𝑘 ) ≺ ( 𝐵 ‘ 𝑛 ) ↔ ∪ 𝑘 ∈ ∅ ( 𝐵 ‘ 𝑘 ) ≺ ( 𝐵 ‘ ∅ ) ) ) |
| 6 | 2 5 | imbi12d | ⊢ ( 𝑛 = ∅ → ( ( ∀ 𝑘 ∈ suc 𝑛 ( 𝐵 ‘ 𝑘 ) ≈ 𝒫 𝑘 → ∪ 𝑘 ∈ 𝑛 ( 𝐵 ‘ 𝑘 ) ≺ ( 𝐵 ‘ 𝑛 ) ) ↔ ( ∀ 𝑘 ∈ suc ∅ ( 𝐵 ‘ 𝑘 ) ≈ 𝒫 𝑘 → ∪ 𝑘 ∈ ∅ ( 𝐵 ‘ 𝑘 ) ≺ ( 𝐵 ‘ ∅ ) ) ) ) |
| 7 | suceq | ⊢ ( 𝑛 = 𝑚 → suc 𝑛 = suc 𝑚 ) | |
| 8 | 7 | raleqdv | ⊢ ( 𝑛 = 𝑚 → ( ∀ 𝑘 ∈ suc 𝑛 ( 𝐵 ‘ 𝑘 ) ≈ 𝒫 𝑘 ↔ ∀ 𝑘 ∈ suc 𝑚 ( 𝐵 ‘ 𝑘 ) ≈ 𝒫 𝑘 ) ) |
| 9 | iuneq1 | ⊢ ( 𝑛 = 𝑚 → ∪ 𝑘 ∈ 𝑛 ( 𝐵 ‘ 𝑘 ) = ∪ 𝑘 ∈ 𝑚 ( 𝐵 ‘ 𝑘 ) ) | |
| 10 | fveq2 | ⊢ ( 𝑛 = 𝑚 → ( 𝐵 ‘ 𝑛 ) = ( 𝐵 ‘ 𝑚 ) ) | |
| 11 | 9 10 | breq12d | ⊢ ( 𝑛 = 𝑚 → ( ∪ 𝑘 ∈ 𝑛 ( 𝐵 ‘ 𝑘 ) ≺ ( 𝐵 ‘ 𝑛 ) ↔ ∪ 𝑘 ∈ 𝑚 ( 𝐵 ‘ 𝑘 ) ≺ ( 𝐵 ‘ 𝑚 ) ) ) |
| 12 | 8 11 | imbi12d | ⊢ ( 𝑛 = 𝑚 → ( ( ∀ 𝑘 ∈ suc 𝑛 ( 𝐵 ‘ 𝑘 ) ≈ 𝒫 𝑘 → ∪ 𝑘 ∈ 𝑛 ( 𝐵 ‘ 𝑘 ) ≺ ( 𝐵 ‘ 𝑛 ) ) ↔ ( ∀ 𝑘 ∈ suc 𝑚 ( 𝐵 ‘ 𝑘 ) ≈ 𝒫 𝑘 → ∪ 𝑘 ∈ 𝑚 ( 𝐵 ‘ 𝑘 ) ≺ ( 𝐵 ‘ 𝑚 ) ) ) ) |
| 13 | suceq | ⊢ ( 𝑛 = suc 𝑚 → suc 𝑛 = suc suc 𝑚 ) | |
| 14 | 13 | raleqdv | ⊢ ( 𝑛 = suc 𝑚 → ( ∀ 𝑘 ∈ suc 𝑛 ( 𝐵 ‘ 𝑘 ) ≈ 𝒫 𝑘 ↔ ∀ 𝑘 ∈ suc suc 𝑚 ( 𝐵 ‘ 𝑘 ) ≈ 𝒫 𝑘 ) ) |
| 15 | iuneq1 | ⊢ ( 𝑛 = suc 𝑚 → ∪ 𝑘 ∈ 𝑛 ( 𝐵 ‘ 𝑘 ) = ∪ 𝑘 ∈ suc 𝑚 ( 𝐵 ‘ 𝑘 ) ) | |
| 16 | fveq2 | ⊢ ( 𝑛 = suc 𝑚 → ( 𝐵 ‘ 𝑛 ) = ( 𝐵 ‘ suc 𝑚 ) ) | |
| 17 | 15 16 | breq12d | ⊢ ( 𝑛 = suc 𝑚 → ( ∪ 𝑘 ∈ 𝑛 ( 𝐵 ‘ 𝑘 ) ≺ ( 𝐵 ‘ 𝑛 ) ↔ ∪ 𝑘 ∈ suc 𝑚 ( 𝐵 ‘ 𝑘 ) ≺ ( 𝐵 ‘ suc 𝑚 ) ) ) |
| 18 | 14 17 | imbi12d | ⊢ ( 𝑛 = suc 𝑚 → ( ( ∀ 𝑘 ∈ suc 𝑛 ( 𝐵 ‘ 𝑘 ) ≈ 𝒫 𝑘 → ∪ 𝑘 ∈ 𝑛 ( 𝐵 ‘ 𝑘 ) ≺ ( 𝐵 ‘ 𝑛 ) ) ↔ ( ∀ 𝑘 ∈ suc suc 𝑚 ( 𝐵 ‘ 𝑘 ) ≈ 𝒫 𝑘 → ∪ 𝑘 ∈ suc 𝑚 ( 𝐵 ‘ 𝑘 ) ≺ ( 𝐵 ‘ suc 𝑚 ) ) ) ) |
| 19 | 0iun | ⊢ ∪ 𝑘 ∈ ∅ ( 𝐵 ‘ 𝑘 ) = ∅ | |
| 20 | 0ex | ⊢ ∅ ∈ V | |
| 21 | 20 | sucid | ⊢ ∅ ∈ suc ∅ |
| 22 | fveq2 | ⊢ ( 𝑘 = ∅ → ( 𝐵 ‘ 𝑘 ) = ( 𝐵 ‘ ∅ ) ) | |
| 23 | pweq | ⊢ ( 𝑘 = ∅ → 𝒫 𝑘 = 𝒫 ∅ ) | |
| 24 | 22 23 | breq12d | ⊢ ( 𝑘 = ∅ → ( ( 𝐵 ‘ 𝑘 ) ≈ 𝒫 𝑘 ↔ ( 𝐵 ‘ ∅ ) ≈ 𝒫 ∅ ) ) |
| 25 | 24 | rspcv | ⊢ ( ∅ ∈ suc ∅ → ( ∀ 𝑘 ∈ suc ∅ ( 𝐵 ‘ 𝑘 ) ≈ 𝒫 𝑘 → ( 𝐵 ‘ ∅ ) ≈ 𝒫 ∅ ) ) |
| 26 | 21 25 | ax-mp | ⊢ ( ∀ 𝑘 ∈ suc ∅ ( 𝐵 ‘ 𝑘 ) ≈ 𝒫 𝑘 → ( 𝐵 ‘ ∅ ) ≈ 𝒫 ∅ ) |
| 27 | 20 | canth2 | ⊢ ∅ ≺ 𝒫 ∅ |
| 28 | ensym | ⊢ ( ( 𝐵 ‘ ∅ ) ≈ 𝒫 ∅ → 𝒫 ∅ ≈ ( 𝐵 ‘ ∅ ) ) | |
| 29 | sdomentr | ⊢ ( ( ∅ ≺ 𝒫 ∅ ∧ 𝒫 ∅ ≈ ( 𝐵 ‘ ∅ ) ) → ∅ ≺ ( 𝐵 ‘ ∅ ) ) | |
| 30 | 27 28 29 | sylancr | ⊢ ( ( 𝐵 ‘ ∅ ) ≈ 𝒫 ∅ → ∅ ≺ ( 𝐵 ‘ ∅ ) ) |
| 31 | 26 30 | syl | ⊢ ( ∀ 𝑘 ∈ suc ∅ ( 𝐵 ‘ 𝑘 ) ≈ 𝒫 𝑘 → ∅ ≺ ( 𝐵 ‘ ∅ ) ) |
| 32 | 19 31 | eqbrtrid | ⊢ ( ∀ 𝑘 ∈ suc ∅ ( 𝐵 ‘ 𝑘 ) ≈ 𝒫 𝑘 → ∪ 𝑘 ∈ ∅ ( 𝐵 ‘ 𝑘 ) ≺ ( 𝐵 ‘ ∅ ) ) |
| 33 | sssucid | ⊢ suc 𝑚 ⊆ suc suc 𝑚 | |
| 34 | ssralv | ⊢ ( suc 𝑚 ⊆ suc suc 𝑚 → ( ∀ 𝑘 ∈ suc suc 𝑚 ( 𝐵 ‘ 𝑘 ) ≈ 𝒫 𝑘 → ∀ 𝑘 ∈ suc 𝑚 ( 𝐵 ‘ 𝑘 ) ≈ 𝒫 𝑘 ) ) | |
| 35 | 33 34 | ax-mp | ⊢ ( ∀ 𝑘 ∈ suc suc 𝑚 ( 𝐵 ‘ 𝑘 ) ≈ 𝒫 𝑘 → ∀ 𝑘 ∈ suc 𝑚 ( 𝐵 ‘ 𝑘 ) ≈ 𝒫 𝑘 ) |
| 36 | pm2.27 | ⊢ ( ∀ 𝑘 ∈ suc 𝑚 ( 𝐵 ‘ 𝑘 ) ≈ 𝒫 𝑘 → ( ( ∀ 𝑘 ∈ suc 𝑚 ( 𝐵 ‘ 𝑘 ) ≈ 𝒫 𝑘 → ∪ 𝑘 ∈ 𝑚 ( 𝐵 ‘ 𝑘 ) ≺ ( 𝐵 ‘ 𝑚 ) ) → ∪ 𝑘 ∈ 𝑚 ( 𝐵 ‘ 𝑘 ) ≺ ( 𝐵 ‘ 𝑚 ) ) ) | |
| 37 | 35 36 | syl | ⊢ ( ∀ 𝑘 ∈ suc suc 𝑚 ( 𝐵 ‘ 𝑘 ) ≈ 𝒫 𝑘 → ( ( ∀ 𝑘 ∈ suc 𝑚 ( 𝐵 ‘ 𝑘 ) ≈ 𝒫 𝑘 → ∪ 𝑘 ∈ 𝑚 ( 𝐵 ‘ 𝑘 ) ≺ ( 𝐵 ‘ 𝑚 ) ) → ∪ 𝑘 ∈ 𝑚 ( 𝐵 ‘ 𝑘 ) ≺ ( 𝐵 ‘ 𝑚 ) ) ) |
| 38 | 37 | adantl | ⊢ ( ( 𝑚 ∈ ω ∧ ∀ 𝑘 ∈ suc suc 𝑚 ( 𝐵 ‘ 𝑘 ) ≈ 𝒫 𝑘 ) → ( ( ∀ 𝑘 ∈ suc 𝑚 ( 𝐵 ‘ 𝑘 ) ≈ 𝒫 𝑘 → ∪ 𝑘 ∈ 𝑚 ( 𝐵 ‘ 𝑘 ) ≺ ( 𝐵 ‘ 𝑚 ) ) → ∪ 𝑘 ∈ 𝑚 ( 𝐵 ‘ 𝑘 ) ≺ ( 𝐵 ‘ 𝑚 ) ) ) |
| 39 | vex | ⊢ 𝑚 ∈ V | |
| 40 | 39 | sucid | ⊢ 𝑚 ∈ suc 𝑚 |
| 41 | elelsuc | ⊢ ( 𝑚 ∈ suc 𝑚 → 𝑚 ∈ suc suc 𝑚 ) | |
| 42 | fveq2 | ⊢ ( 𝑘 = 𝑚 → ( 𝐵 ‘ 𝑘 ) = ( 𝐵 ‘ 𝑚 ) ) | |
| 43 | pweq | ⊢ ( 𝑘 = 𝑚 → 𝒫 𝑘 = 𝒫 𝑚 ) | |
| 44 | 42 43 | breq12d | ⊢ ( 𝑘 = 𝑚 → ( ( 𝐵 ‘ 𝑘 ) ≈ 𝒫 𝑘 ↔ ( 𝐵 ‘ 𝑚 ) ≈ 𝒫 𝑚 ) ) |
| 45 | 44 | rspcv | ⊢ ( 𝑚 ∈ suc suc 𝑚 → ( ∀ 𝑘 ∈ suc suc 𝑚 ( 𝐵 ‘ 𝑘 ) ≈ 𝒫 𝑘 → ( 𝐵 ‘ 𝑚 ) ≈ 𝒫 𝑚 ) ) |
| 46 | 40 41 45 | mp2b | ⊢ ( ∀ 𝑘 ∈ suc suc 𝑚 ( 𝐵 ‘ 𝑘 ) ≈ 𝒫 𝑘 → ( 𝐵 ‘ 𝑚 ) ≈ 𝒫 𝑚 ) |
| 47 | djuen | ⊢ ( ( ( 𝐵 ‘ 𝑚 ) ≈ 𝒫 𝑚 ∧ ( 𝐵 ‘ 𝑚 ) ≈ 𝒫 𝑚 ) → ( ( 𝐵 ‘ 𝑚 ) ⊔ ( 𝐵 ‘ 𝑚 ) ) ≈ ( 𝒫 𝑚 ⊔ 𝒫 𝑚 ) ) | |
| 48 | 46 46 47 | syl2anc | ⊢ ( ∀ 𝑘 ∈ suc suc 𝑚 ( 𝐵 ‘ 𝑘 ) ≈ 𝒫 𝑘 → ( ( 𝐵 ‘ 𝑚 ) ⊔ ( 𝐵 ‘ 𝑚 ) ) ≈ ( 𝒫 𝑚 ⊔ 𝒫 𝑚 ) ) |
| 49 | pwdju1 | ⊢ ( 𝑚 ∈ ω → ( 𝒫 𝑚 ⊔ 𝒫 𝑚 ) ≈ 𝒫 ( 𝑚 ⊔ 1o ) ) | |
| 50 | nnord | ⊢ ( 𝑚 ∈ ω → Ord 𝑚 ) | |
| 51 | ordirr | ⊢ ( Ord 𝑚 → ¬ 𝑚 ∈ 𝑚 ) | |
| 52 | 50 51 | syl | ⊢ ( 𝑚 ∈ ω → ¬ 𝑚 ∈ 𝑚 ) |
| 53 | dju1en | ⊢ ( ( 𝑚 ∈ ω ∧ ¬ 𝑚 ∈ 𝑚 ) → ( 𝑚 ⊔ 1o ) ≈ suc 𝑚 ) | |
| 54 | 52 53 | mpdan | ⊢ ( 𝑚 ∈ ω → ( 𝑚 ⊔ 1o ) ≈ suc 𝑚 ) |
| 55 | pwen | ⊢ ( ( 𝑚 ⊔ 1o ) ≈ suc 𝑚 → 𝒫 ( 𝑚 ⊔ 1o ) ≈ 𝒫 suc 𝑚 ) | |
| 56 | 54 55 | syl | ⊢ ( 𝑚 ∈ ω → 𝒫 ( 𝑚 ⊔ 1o ) ≈ 𝒫 suc 𝑚 ) |
| 57 | entr | ⊢ ( ( ( 𝒫 𝑚 ⊔ 𝒫 𝑚 ) ≈ 𝒫 ( 𝑚 ⊔ 1o ) ∧ 𝒫 ( 𝑚 ⊔ 1o ) ≈ 𝒫 suc 𝑚 ) → ( 𝒫 𝑚 ⊔ 𝒫 𝑚 ) ≈ 𝒫 suc 𝑚 ) | |
| 58 | 49 56 57 | syl2anc | ⊢ ( 𝑚 ∈ ω → ( 𝒫 𝑚 ⊔ 𝒫 𝑚 ) ≈ 𝒫 suc 𝑚 ) |
| 59 | entr | ⊢ ( ( ( ( 𝐵 ‘ 𝑚 ) ⊔ ( 𝐵 ‘ 𝑚 ) ) ≈ ( 𝒫 𝑚 ⊔ 𝒫 𝑚 ) ∧ ( 𝒫 𝑚 ⊔ 𝒫 𝑚 ) ≈ 𝒫 suc 𝑚 ) → ( ( 𝐵 ‘ 𝑚 ) ⊔ ( 𝐵 ‘ 𝑚 ) ) ≈ 𝒫 suc 𝑚 ) | |
| 60 | 48 58 59 | syl2an | ⊢ ( ( ∀ 𝑘 ∈ suc suc 𝑚 ( 𝐵 ‘ 𝑘 ) ≈ 𝒫 𝑘 ∧ 𝑚 ∈ ω ) → ( ( 𝐵 ‘ 𝑚 ) ⊔ ( 𝐵 ‘ 𝑚 ) ) ≈ 𝒫 suc 𝑚 ) |
| 61 | 39 | sucex | ⊢ suc 𝑚 ∈ V |
| 62 | 61 | sucid | ⊢ suc 𝑚 ∈ suc suc 𝑚 |
| 63 | fveq2 | ⊢ ( 𝑘 = suc 𝑚 → ( 𝐵 ‘ 𝑘 ) = ( 𝐵 ‘ suc 𝑚 ) ) | |
| 64 | pweq | ⊢ ( 𝑘 = suc 𝑚 → 𝒫 𝑘 = 𝒫 suc 𝑚 ) | |
| 65 | 63 64 | breq12d | ⊢ ( 𝑘 = suc 𝑚 → ( ( 𝐵 ‘ 𝑘 ) ≈ 𝒫 𝑘 ↔ ( 𝐵 ‘ suc 𝑚 ) ≈ 𝒫 suc 𝑚 ) ) |
| 66 | 65 | rspcv | ⊢ ( suc 𝑚 ∈ suc suc 𝑚 → ( ∀ 𝑘 ∈ suc suc 𝑚 ( 𝐵 ‘ 𝑘 ) ≈ 𝒫 𝑘 → ( 𝐵 ‘ suc 𝑚 ) ≈ 𝒫 suc 𝑚 ) ) |
| 67 | 62 66 | ax-mp | ⊢ ( ∀ 𝑘 ∈ suc suc 𝑚 ( 𝐵 ‘ 𝑘 ) ≈ 𝒫 𝑘 → ( 𝐵 ‘ suc 𝑚 ) ≈ 𝒫 suc 𝑚 ) |
| 68 | 67 | ensymd | ⊢ ( ∀ 𝑘 ∈ suc suc 𝑚 ( 𝐵 ‘ 𝑘 ) ≈ 𝒫 𝑘 → 𝒫 suc 𝑚 ≈ ( 𝐵 ‘ suc 𝑚 ) ) |
| 69 | 68 | adantr | ⊢ ( ( ∀ 𝑘 ∈ suc suc 𝑚 ( 𝐵 ‘ 𝑘 ) ≈ 𝒫 𝑘 ∧ 𝑚 ∈ ω ) → 𝒫 suc 𝑚 ≈ ( 𝐵 ‘ suc 𝑚 ) ) |
| 70 | entr | ⊢ ( ( ( ( 𝐵 ‘ 𝑚 ) ⊔ ( 𝐵 ‘ 𝑚 ) ) ≈ 𝒫 suc 𝑚 ∧ 𝒫 suc 𝑚 ≈ ( 𝐵 ‘ suc 𝑚 ) ) → ( ( 𝐵 ‘ 𝑚 ) ⊔ ( 𝐵 ‘ 𝑚 ) ) ≈ ( 𝐵 ‘ suc 𝑚 ) ) | |
| 71 | 60 69 70 | syl2anc | ⊢ ( ( ∀ 𝑘 ∈ suc suc 𝑚 ( 𝐵 ‘ 𝑘 ) ≈ 𝒫 𝑘 ∧ 𝑚 ∈ ω ) → ( ( 𝐵 ‘ 𝑚 ) ⊔ ( 𝐵 ‘ 𝑚 ) ) ≈ ( 𝐵 ‘ suc 𝑚 ) ) |
| 72 | 71 | ancoms | ⊢ ( ( 𝑚 ∈ ω ∧ ∀ 𝑘 ∈ suc suc 𝑚 ( 𝐵 ‘ 𝑘 ) ≈ 𝒫 𝑘 ) → ( ( 𝐵 ‘ 𝑚 ) ⊔ ( 𝐵 ‘ 𝑚 ) ) ≈ ( 𝐵 ‘ suc 𝑚 ) ) |
| 73 | nnfi | ⊢ ( 𝑚 ∈ ω → 𝑚 ∈ Fin ) | |
| 74 | pwfi | ⊢ ( 𝑚 ∈ Fin ↔ 𝒫 𝑚 ∈ Fin ) | |
| 75 | isfinite | ⊢ ( 𝒫 𝑚 ∈ Fin ↔ 𝒫 𝑚 ≺ ω ) | |
| 76 | 74 75 | bitri | ⊢ ( 𝑚 ∈ Fin ↔ 𝒫 𝑚 ≺ ω ) |
| 77 | 73 76 | sylib | ⊢ ( 𝑚 ∈ ω → 𝒫 𝑚 ≺ ω ) |
| 78 | ensdomtr | ⊢ ( ( ( 𝐵 ‘ 𝑚 ) ≈ 𝒫 𝑚 ∧ 𝒫 𝑚 ≺ ω ) → ( 𝐵 ‘ 𝑚 ) ≺ ω ) | |
| 79 | 46 77 78 | syl2an | ⊢ ( ( ∀ 𝑘 ∈ suc suc 𝑚 ( 𝐵 ‘ 𝑘 ) ≈ 𝒫 𝑘 ∧ 𝑚 ∈ ω ) → ( 𝐵 ‘ 𝑚 ) ≺ ω ) |
| 80 | isfinite | ⊢ ( ( 𝐵 ‘ 𝑚 ) ∈ Fin ↔ ( 𝐵 ‘ 𝑚 ) ≺ ω ) | |
| 81 | 79 80 | sylibr | ⊢ ( ( ∀ 𝑘 ∈ suc suc 𝑚 ( 𝐵 ‘ 𝑘 ) ≈ 𝒫 𝑘 ∧ 𝑚 ∈ ω ) → ( 𝐵 ‘ 𝑚 ) ∈ Fin ) |
| 82 | 81 | ancoms | ⊢ ( ( 𝑚 ∈ ω ∧ ∀ 𝑘 ∈ suc suc 𝑚 ( 𝐵 ‘ 𝑘 ) ≈ 𝒫 𝑘 ) → ( 𝐵 ‘ 𝑚 ) ∈ Fin ) |
| 83 | 39 42 | iunsuc | ⊢ ∪ 𝑘 ∈ suc 𝑚 ( 𝐵 ‘ 𝑘 ) = ( ∪ 𝑘 ∈ 𝑚 ( 𝐵 ‘ 𝑘 ) ∪ ( 𝐵 ‘ 𝑚 ) ) |
| 84 | fvex | ⊢ ( 𝐵 ‘ 𝑘 ) ∈ V | |
| 85 | 39 84 | iunex | ⊢ ∪ 𝑘 ∈ 𝑚 ( 𝐵 ‘ 𝑘 ) ∈ V |
| 86 | fvex | ⊢ ( 𝐵 ‘ 𝑚 ) ∈ V | |
| 87 | undjudom | ⊢ ( ( ∪ 𝑘 ∈ 𝑚 ( 𝐵 ‘ 𝑘 ) ∈ V ∧ ( 𝐵 ‘ 𝑚 ) ∈ V ) → ( ∪ 𝑘 ∈ 𝑚 ( 𝐵 ‘ 𝑘 ) ∪ ( 𝐵 ‘ 𝑚 ) ) ≼ ( ∪ 𝑘 ∈ 𝑚 ( 𝐵 ‘ 𝑘 ) ⊔ ( 𝐵 ‘ 𝑚 ) ) ) | |
| 88 | 85 86 87 | mp2an | ⊢ ( ∪ 𝑘 ∈ 𝑚 ( 𝐵 ‘ 𝑘 ) ∪ ( 𝐵 ‘ 𝑚 ) ) ≼ ( ∪ 𝑘 ∈ 𝑚 ( 𝐵 ‘ 𝑘 ) ⊔ ( 𝐵 ‘ 𝑚 ) ) |
| 89 | 83 88 | eqbrtri | ⊢ ∪ 𝑘 ∈ suc 𝑚 ( 𝐵 ‘ 𝑘 ) ≼ ( ∪ 𝑘 ∈ 𝑚 ( 𝐵 ‘ 𝑘 ) ⊔ ( 𝐵 ‘ 𝑚 ) ) |
| 90 | sdomtr | ⊢ ( ( ∪ 𝑘 ∈ 𝑚 ( 𝐵 ‘ 𝑘 ) ≺ ( 𝐵 ‘ 𝑚 ) ∧ ( 𝐵 ‘ 𝑚 ) ≺ ω ) → ∪ 𝑘 ∈ 𝑚 ( 𝐵 ‘ 𝑘 ) ≺ ω ) | |
| 91 | 80 90 | sylan2b | ⊢ ( ( ∪ 𝑘 ∈ 𝑚 ( 𝐵 ‘ 𝑘 ) ≺ ( 𝐵 ‘ 𝑚 ) ∧ ( 𝐵 ‘ 𝑚 ) ∈ Fin ) → ∪ 𝑘 ∈ 𝑚 ( 𝐵 ‘ 𝑘 ) ≺ ω ) |
| 92 | isfinite | ⊢ ( ∪ 𝑘 ∈ 𝑚 ( 𝐵 ‘ 𝑘 ) ∈ Fin ↔ ∪ 𝑘 ∈ 𝑚 ( 𝐵 ‘ 𝑘 ) ≺ ω ) | |
| 93 | 91 92 | sylibr | ⊢ ( ( ∪ 𝑘 ∈ 𝑚 ( 𝐵 ‘ 𝑘 ) ≺ ( 𝐵 ‘ 𝑚 ) ∧ ( 𝐵 ‘ 𝑚 ) ∈ Fin ) → ∪ 𝑘 ∈ 𝑚 ( 𝐵 ‘ 𝑘 ) ∈ Fin ) |
| 94 | finnum | ⊢ ( ∪ 𝑘 ∈ 𝑚 ( 𝐵 ‘ 𝑘 ) ∈ Fin → ∪ 𝑘 ∈ 𝑚 ( 𝐵 ‘ 𝑘 ) ∈ dom card ) | |
| 95 | 93 94 | syl | ⊢ ( ( ∪ 𝑘 ∈ 𝑚 ( 𝐵 ‘ 𝑘 ) ≺ ( 𝐵 ‘ 𝑚 ) ∧ ( 𝐵 ‘ 𝑚 ) ∈ Fin ) → ∪ 𝑘 ∈ 𝑚 ( 𝐵 ‘ 𝑘 ) ∈ dom card ) |
| 96 | finnum | ⊢ ( ( 𝐵 ‘ 𝑚 ) ∈ Fin → ( 𝐵 ‘ 𝑚 ) ∈ dom card ) | |
| 97 | 96 | adantl | ⊢ ( ( ∪ 𝑘 ∈ 𝑚 ( 𝐵 ‘ 𝑘 ) ≺ ( 𝐵 ‘ 𝑚 ) ∧ ( 𝐵 ‘ 𝑚 ) ∈ Fin ) → ( 𝐵 ‘ 𝑚 ) ∈ dom card ) |
| 98 | cardadju | ⊢ ( ( ∪ 𝑘 ∈ 𝑚 ( 𝐵 ‘ 𝑘 ) ∈ dom card ∧ ( 𝐵 ‘ 𝑚 ) ∈ dom card ) → ( ∪ 𝑘 ∈ 𝑚 ( 𝐵 ‘ 𝑘 ) ⊔ ( 𝐵 ‘ 𝑚 ) ) ≈ ( ( card ‘ ∪ 𝑘 ∈ 𝑚 ( 𝐵 ‘ 𝑘 ) ) +o ( card ‘ ( 𝐵 ‘ 𝑚 ) ) ) ) | |
| 99 | 95 97 98 | syl2anc | ⊢ ( ( ∪ 𝑘 ∈ 𝑚 ( 𝐵 ‘ 𝑘 ) ≺ ( 𝐵 ‘ 𝑚 ) ∧ ( 𝐵 ‘ 𝑚 ) ∈ Fin ) → ( ∪ 𝑘 ∈ 𝑚 ( 𝐵 ‘ 𝑘 ) ⊔ ( 𝐵 ‘ 𝑚 ) ) ≈ ( ( card ‘ ∪ 𝑘 ∈ 𝑚 ( 𝐵 ‘ 𝑘 ) ) +o ( card ‘ ( 𝐵 ‘ 𝑚 ) ) ) ) |
| 100 | ficardom | ⊢ ( ∪ 𝑘 ∈ 𝑚 ( 𝐵 ‘ 𝑘 ) ∈ Fin → ( card ‘ ∪ 𝑘 ∈ 𝑚 ( 𝐵 ‘ 𝑘 ) ) ∈ ω ) | |
| 101 | 93 100 | syl | ⊢ ( ( ∪ 𝑘 ∈ 𝑚 ( 𝐵 ‘ 𝑘 ) ≺ ( 𝐵 ‘ 𝑚 ) ∧ ( 𝐵 ‘ 𝑚 ) ∈ Fin ) → ( card ‘ ∪ 𝑘 ∈ 𝑚 ( 𝐵 ‘ 𝑘 ) ) ∈ ω ) |
| 102 | ficardom | ⊢ ( ( 𝐵 ‘ 𝑚 ) ∈ Fin → ( card ‘ ( 𝐵 ‘ 𝑚 ) ) ∈ ω ) | |
| 103 | 102 | adantl | ⊢ ( ( ∪ 𝑘 ∈ 𝑚 ( 𝐵 ‘ 𝑘 ) ≺ ( 𝐵 ‘ 𝑚 ) ∧ ( 𝐵 ‘ 𝑚 ) ∈ Fin ) → ( card ‘ ( 𝐵 ‘ 𝑚 ) ) ∈ ω ) |
| 104 | cardid2 | ⊢ ( ∪ 𝑘 ∈ 𝑚 ( 𝐵 ‘ 𝑘 ) ∈ dom card → ( card ‘ ∪ 𝑘 ∈ 𝑚 ( 𝐵 ‘ 𝑘 ) ) ≈ ∪ 𝑘 ∈ 𝑚 ( 𝐵 ‘ 𝑘 ) ) | |
| 105 | 93 94 104 | 3syl | ⊢ ( ( ∪ 𝑘 ∈ 𝑚 ( 𝐵 ‘ 𝑘 ) ≺ ( 𝐵 ‘ 𝑚 ) ∧ ( 𝐵 ‘ 𝑚 ) ∈ Fin ) → ( card ‘ ∪ 𝑘 ∈ 𝑚 ( 𝐵 ‘ 𝑘 ) ) ≈ ∪ 𝑘 ∈ 𝑚 ( 𝐵 ‘ 𝑘 ) ) |
| 106 | simpl | ⊢ ( ( ∪ 𝑘 ∈ 𝑚 ( 𝐵 ‘ 𝑘 ) ≺ ( 𝐵 ‘ 𝑚 ) ∧ ( 𝐵 ‘ 𝑚 ) ∈ Fin ) → ∪ 𝑘 ∈ 𝑚 ( 𝐵 ‘ 𝑘 ) ≺ ( 𝐵 ‘ 𝑚 ) ) | |
| 107 | cardid2 | ⊢ ( ( 𝐵 ‘ 𝑚 ) ∈ dom card → ( card ‘ ( 𝐵 ‘ 𝑚 ) ) ≈ ( 𝐵 ‘ 𝑚 ) ) | |
| 108 | ensym | ⊢ ( ( card ‘ ( 𝐵 ‘ 𝑚 ) ) ≈ ( 𝐵 ‘ 𝑚 ) → ( 𝐵 ‘ 𝑚 ) ≈ ( card ‘ ( 𝐵 ‘ 𝑚 ) ) ) | |
| 109 | 96 107 108 | 3syl | ⊢ ( ( 𝐵 ‘ 𝑚 ) ∈ Fin → ( 𝐵 ‘ 𝑚 ) ≈ ( card ‘ ( 𝐵 ‘ 𝑚 ) ) ) |
| 110 | 109 | adantl | ⊢ ( ( ∪ 𝑘 ∈ 𝑚 ( 𝐵 ‘ 𝑘 ) ≺ ( 𝐵 ‘ 𝑚 ) ∧ ( 𝐵 ‘ 𝑚 ) ∈ Fin ) → ( 𝐵 ‘ 𝑚 ) ≈ ( card ‘ ( 𝐵 ‘ 𝑚 ) ) ) |
| 111 | ensdomtr | ⊢ ( ( ( card ‘ ∪ 𝑘 ∈ 𝑚 ( 𝐵 ‘ 𝑘 ) ) ≈ ∪ 𝑘 ∈ 𝑚 ( 𝐵 ‘ 𝑘 ) ∧ ∪ 𝑘 ∈ 𝑚 ( 𝐵 ‘ 𝑘 ) ≺ ( 𝐵 ‘ 𝑚 ) ) → ( card ‘ ∪ 𝑘 ∈ 𝑚 ( 𝐵 ‘ 𝑘 ) ) ≺ ( 𝐵 ‘ 𝑚 ) ) | |
| 112 | sdomentr | ⊢ ( ( ( card ‘ ∪ 𝑘 ∈ 𝑚 ( 𝐵 ‘ 𝑘 ) ) ≺ ( 𝐵 ‘ 𝑚 ) ∧ ( 𝐵 ‘ 𝑚 ) ≈ ( card ‘ ( 𝐵 ‘ 𝑚 ) ) ) → ( card ‘ ∪ 𝑘 ∈ 𝑚 ( 𝐵 ‘ 𝑘 ) ) ≺ ( card ‘ ( 𝐵 ‘ 𝑚 ) ) ) | |
| 113 | 111 112 | sylan | ⊢ ( ( ( ( card ‘ ∪ 𝑘 ∈ 𝑚 ( 𝐵 ‘ 𝑘 ) ) ≈ ∪ 𝑘 ∈ 𝑚 ( 𝐵 ‘ 𝑘 ) ∧ ∪ 𝑘 ∈ 𝑚 ( 𝐵 ‘ 𝑘 ) ≺ ( 𝐵 ‘ 𝑚 ) ) ∧ ( 𝐵 ‘ 𝑚 ) ≈ ( card ‘ ( 𝐵 ‘ 𝑚 ) ) ) → ( card ‘ ∪ 𝑘 ∈ 𝑚 ( 𝐵 ‘ 𝑘 ) ) ≺ ( card ‘ ( 𝐵 ‘ 𝑚 ) ) ) |
| 114 | 105 106 110 113 | syl21anc | ⊢ ( ( ∪ 𝑘 ∈ 𝑚 ( 𝐵 ‘ 𝑘 ) ≺ ( 𝐵 ‘ 𝑚 ) ∧ ( 𝐵 ‘ 𝑚 ) ∈ Fin ) → ( card ‘ ∪ 𝑘 ∈ 𝑚 ( 𝐵 ‘ 𝑘 ) ) ≺ ( card ‘ ( 𝐵 ‘ 𝑚 ) ) ) |
| 115 | cardon | ⊢ ( card ‘ ∪ 𝑘 ∈ 𝑚 ( 𝐵 ‘ 𝑘 ) ) ∈ On | |
| 116 | cardon | ⊢ ( card ‘ ( 𝐵 ‘ 𝑚 ) ) ∈ On | |
| 117 | onenon | ⊢ ( ( card ‘ ( 𝐵 ‘ 𝑚 ) ) ∈ On → ( card ‘ ( 𝐵 ‘ 𝑚 ) ) ∈ dom card ) | |
| 118 | 116 117 | ax-mp | ⊢ ( card ‘ ( 𝐵 ‘ 𝑚 ) ) ∈ dom card |
| 119 | cardsdomel | ⊢ ( ( ( card ‘ ∪ 𝑘 ∈ 𝑚 ( 𝐵 ‘ 𝑘 ) ) ∈ On ∧ ( card ‘ ( 𝐵 ‘ 𝑚 ) ) ∈ dom card ) → ( ( card ‘ ∪ 𝑘 ∈ 𝑚 ( 𝐵 ‘ 𝑘 ) ) ≺ ( card ‘ ( 𝐵 ‘ 𝑚 ) ) ↔ ( card ‘ ∪ 𝑘 ∈ 𝑚 ( 𝐵 ‘ 𝑘 ) ) ∈ ( card ‘ ( card ‘ ( 𝐵 ‘ 𝑚 ) ) ) ) ) | |
| 120 | 115 118 119 | mp2an | ⊢ ( ( card ‘ ∪ 𝑘 ∈ 𝑚 ( 𝐵 ‘ 𝑘 ) ) ≺ ( card ‘ ( 𝐵 ‘ 𝑚 ) ) ↔ ( card ‘ ∪ 𝑘 ∈ 𝑚 ( 𝐵 ‘ 𝑘 ) ) ∈ ( card ‘ ( card ‘ ( 𝐵 ‘ 𝑚 ) ) ) ) |
| 121 | cardidm | ⊢ ( card ‘ ( card ‘ ( 𝐵 ‘ 𝑚 ) ) ) = ( card ‘ ( 𝐵 ‘ 𝑚 ) ) | |
| 122 | 121 | eleq2i | ⊢ ( ( card ‘ ∪ 𝑘 ∈ 𝑚 ( 𝐵 ‘ 𝑘 ) ) ∈ ( card ‘ ( card ‘ ( 𝐵 ‘ 𝑚 ) ) ) ↔ ( card ‘ ∪ 𝑘 ∈ 𝑚 ( 𝐵 ‘ 𝑘 ) ) ∈ ( card ‘ ( 𝐵 ‘ 𝑚 ) ) ) |
| 123 | 120 122 | bitri | ⊢ ( ( card ‘ ∪ 𝑘 ∈ 𝑚 ( 𝐵 ‘ 𝑘 ) ) ≺ ( card ‘ ( 𝐵 ‘ 𝑚 ) ) ↔ ( card ‘ ∪ 𝑘 ∈ 𝑚 ( 𝐵 ‘ 𝑘 ) ) ∈ ( card ‘ ( 𝐵 ‘ 𝑚 ) ) ) |
| 124 | 114 123 | sylib | ⊢ ( ( ∪ 𝑘 ∈ 𝑚 ( 𝐵 ‘ 𝑘 ) ≺ ( 𝐵 ‘ 𝑚 ) ∧ ( 𝐵 ‘ 𝑚 ) ∈ Fin ) → ( card ‘ ∪ 𝑘 ∈ 𝑚 ( 𝐵 ‘ 𝑘 ) ) ∈ ( card ‘ ( 𝐵 ‘ 𝑚 ) ) ) |
| 125 | nnaordr | ⊢ ( ( ( card ‘ ∪ 𝑘 ∈ 𝑚 ( 𝐵 ‘ 𝑘 ) ) ∈ ω ∧ ( card ‘ ( 𝐵 ‘ 𝑚 ) ) ∈ ω ∧ ( card ‘ ( 𝐵 ‘ 𝑚 ) ) ∈ ω ) → ( ( card ‘ ∪ 𝑘 ∈ 𝑚 ( 𝐵 ‘ 𝑘 ) ) ∈ ( card ‘ ( 𝐵 ‘ 𝑚 ) ) ↔ ( ( card ‘ ∪ 𝑘 ∈ 𝑚 ( 𝐵 ‘ 𝑘 ) ) +o ( card ‘ ( 𝐵 ‘ 𝑚 ) ) ) ∈ ( ( card ‘ ( 𝐵 ‘ 𝑚 ) ) +o ( card ‘ ( 𝐵 ‘ 𝑚 ) ) ) ) ) | |
| 126 | 125 | biimpa | ⊢ ( ( ( ( card ‘ ∪ 𝑘 ∈ 𝑚 ( 𝐵 ‘ 𝑘 ) ) ∈ ω ∧ ( card ‘ ( 𝐵 ‘ 𝑚 ) ) ∈ ω ∧ ( card ‘ ( 𝐵 ‘ 𝑚 ) ) ∈ ω ) ∧ ( card ‘ ∪ 𝑘 ∈ 𝑚 ( 𝐵 ‘ 𝑘 ) ) ∈ ( card ‘ ( 𝐵 ‘ 𝑚 ) ) ) → ( ( card ‘ ∪ 𝑘 ∈ 𝑚 ( 𝐵 ‘ 𝑘 ) ) +o ( card ‘ ( 𝐵 ‘ 𝑚 ) ) ) ∈ ( ( card ‘ ( 𝐵 ‘ 𝑚 ) ) +o ( card ‘ ( 𝐵 ‘ 𝑚 ) ) ) ) |
| 127 | 101 103 103 124 126 | syl31anc | ⊢ ( ( ∪ 𝑘 ∈ 𝑚 ( 𝐵 ‘ 𝑘 ) ≺ ( 𝐵 ‘ 𝑚 ) ∧ ( 𝐵 ‘ 𝑚 ) ∈ Fin ) → ( ( card ‘ ∪ 𝑘 ∈ 𝑚 ( 𝐵 ‘ 𝑘 ) ) +o ( card ‘ ( 𝐵 ‘ 𝑚 ) ) ) ∈ ( ( card ‘ ( 𝐵 ‘ 𝑚 ) ) +o ( card ‘ ( 𝐵 ‘ 𝑚 ) ) ) ) |
| 128 | nnacl | ⊢ ( ( ( card ‘ ( 𝐵 ‘ 𝑚 ) ) ∈ ω ∧ ( card ‘ ( 𝐵 ‘ 𝑚 ) ) ∈ ω ) → ( ( card ‘ ( 𝐵 ‘ 𝑚 ) ) +o ( card ‘ ( 𝐵 ‘ 𝑚 ) ) ) ∈ ω ) | |
| 129 | 102 102 128 | syl2anc | ⊢ ( ( 𝐵 ‘ 𝑚 ) ∈ Fin → ( ( card ‘ ( 𝐵 ‘ 𝑚 ) ) +o ( card ‘ ( 𝐵 ‘ 𝑚 ) ) ) ∈ ω ) |
| 130 | cardnn | ⊢ ( ( ( card ‘ ( 𝐵 ‘ 𝑚 ) ) +o ( card ‘ ( 𝐵 ‘ 𝑚 ) ) ) ∈ ω → ( card ‘ ( ( card ‘ ( 𝐵 ‘ 𝑚 ) ) +o ( card ‘ ( 𝐵 ‘ 𝑚 ) ) ) ) = ( ( card ‘ ( 𝐵 ‘ 𝑚 ) ) +o ( card ‘ ( 𝐵 ‘ 𝑚 ) ) ) ) | |
| 131 | 129 130 | syl | ⊢ ( ( 𝐵 ‘ 𝑚 ) ∈ Fin → ( card ‘ ( ( card ‘ ( 𝐵 ‘ 𝑚 ) ) +o ( card ‘ ( 𝐵 ‘ 𝑚 ) ) ) ) = ( ( card ‘ ( 𝐵 ‘ 𝑚 ) ) +o ( card ‘ ( 𝐵 ‘ 𝑚 ) ) ) ) |
| 132 | 131 | adantl | ⊢ ( ( ∪ 𝑘 ∈ 𝑚 ( 𝐵 ‘ 𝑘 ) ≺ ( 𝐵 ‘ 𝑚 ) ∧ ( 𝐵 ‘ 𝑚 ) ∈ Fin ) → ( card ‘ ( ( card ‘ ( 𝐵 ‘ 𝑚 ) ) +o ( card ‘ ( 𝐵 ‘ 𝑚 ) ) ) ) = ( ( card ‘ ( 𝐵 ‘ 𝑚 ) ) +o ( card ‘ ( 𝐵 ‘ 𝑚 ) ) ) ) |
| 133 | 127 132 | eleqtrrd | ⊢ ( ( ∪ 𝑘 ∈ 𝑚 ( 𝐵 ‘ 𝑘 ) ≺ ( 𝐵 ‘ 𝑚 ) ∧ ( 𝐵 ‘ 𝑚 ) ∈ Fin ) → ( ( card ‘ ∪ 𝑘 ∈ 𝑚 ( 𝐵 ‘ 𝑘 ) ) +o ( card ‘ ( 𝐵 ‘ 𝑚 ) ) ) ∈ ( card ‘ ( ( card ‘ ( 𝐵 ‘ 𝑚 ) ) +o ( card ‘ ( 𝐵 ‘ 𝑚 ) ) ) ) ) |
| 134 | cardsdomelir | ⊢ ( ( ( card ‘ ∪ 𝑘 ∈ 𝑚 ( 𝐵 ‘ 𝑘 ) ) +o ( card ‘ ( 𝐵 ‘ 𝑚 ) ) ) ∈ ( card ‘ ( ( card ‘ ( 𝐵 ‘ 𝑚 ) ) +o ( card ‘ ( 𝐵 ‘ 𝑚 ) ) ) ) → ( ( card ‘ ∪ 𝑘 ∈ 𝑚 ( 𝐵 ‘ 𝑘 ) ) +o ( card ‘ ( 𝐵 ‘ 𝑚 ) ) ) ≺ ( ( card ‘ ( 𝐵 ‘ 𝑚 ) ) +o ( card ‘ ( 𝐵 ‘ 𝑚 ) ) ) ) | |
| 135 | 133 134 | syl | ⊢ ( ( ∪ 𝑘 ∈ 𝑚 ( 𝐵 ‘ 𝑘 ) ≺ ( 𝐵 ‘ 𝑚 ) ∧ ( 𝐵 ‘ 𝑚 ) ∈ Fin ) → ( ( card ‘ ∪ 𝑘 ∈ 𝑚 ( 𝐵 ‘ 𝑘 ) ) +o ( card ‘ ( 𝐵 ‘ 𝑚 ) ) ) ≺ ( ( card ‘ ( 𝐵 ‘ 𝑚 ) ) +o ( card ‘ ( 𝐵 ‘ 𝑚 ) ) ) ) |
| 136 | ensdomtr | ⊢ ( ( ( ∪ 𝑘 ∈ 𝑚 ( 𝐵 ‘ 𝑘 ) ⊔ ( 𝐵 ‘ 𝑚 ) ) ≈ ( ( card ‘ ∪ 𝑘 ∈ 𝑚 ( 𝐵 ‘ 𝑘 ) ) +o ( card ‘ ( 𝐵 ‘ 𝑚 ) ) ) ∧ ( ( card ‘ ∪ 𝑘 ∈ 𝑚 ( 𝐵 ‘ 𝑘 ) ) +o ( card ‘ ( 𝐵 ‘ 𝑚 ) ) ) ≺ ( ( card ‘ ( 𝐵 ‘ 𝑚 ) ) +o ( card ‘ ( 𝐵 ‘ 𝑚 ) ) ) ) → ( ∪ 𝑘 ∈ 𝑚 ( 𝐵 ‘ 𝑘 ) ⊔ ( 𝐵 ‘ 𝑚 ) ) ≺ ( ( card ‘ ( 𝐵 ‘ 𝑚 ) ) +o ( card ‘ ( 𝐵 ‘ 𝑚 ) ) ) ) | |
| 137 | 99 135 136 | syl2anc | ⊢ ( ( ∪ 𝑘 ∈ 𝑚 ( 𝐵 ‘ 𝑘 ) ≺ ( 𝐵 ‘ 𝑚 ) ∧ ( 𝐵 ‘ 𝑚 ) ∈ Fin ) → ( ∪ 𝑘 ∈ 𝑚 ( 𝐵 ‘ 𝑘 ) ⊔ ( 𝐵 ‘ 𝑚 ) ) ≺ ( ( card ‘ ( 𝐵 ‘ 𝑚 ) ) +o ( card ‘ ( 𝐵 ‘ 𝑚 ) ) ) ) |
| 138 | cardadju | ⊢ ( ( ( 𝐵 ‘ 𝑚 ) ∈ dom card ∧ ( 𝐵 ‘ 𝑚 ) ∈ dom card ) → ( ( 𝐵 ‘ 𝑚 ) ⊔ ( 𝐵 ‘ 𝑚 ) ) ≈ ( ( card ‘ ( 𝐵 ‘ 𝑚 ) ) +o ( card ‘ ( 𝐵 ‘ 𝑚 ) ) ) ) | |
| 139 | 96 96 138 | syl2anc | ⊢ ( ( 𝐵 ‘ 𝑚 ) ∈ Fin → ( ( 𝐵 ‘ 𝑚 ) ⊔ ( 𝐵 ‘ 𝑚 ) ) ≈ ( ( card ‘ ( 𝐵 ‘ 𝑚 ) ) +o ( card ‘ ( 𝐵 ‘ 𝑚 ) ) ) ) |
| 140 | 139 | ensymd | ⊢ ( ( 𝐵 ‘ 𝑚 ) ∈ Fin → ( ( card ‘ ( 𝐵 ‘ 𝑚 ) ) +o ( card ‘ ( 𝐵 ‘ 𝑚 ) ) ) ≈ ( ( 𝐵 ‘ 𝑚 ) ⊔ ( 𝐵 ‘ 𝑚 ) ) ) |
| 141 | 140 | adantl | ⊢ ( ( ∪ 𝑘 ∈ 𝑚 ( 𝐵 ‘ 𝑘 ) ≺ ( 𝐵 ‘ 𝑚 ) ∧ ( 𝐵 ‘ 𝑚 ) ∈ Fin ) → ( ( card ‘ ( 𝐵 ‘ 𝑚 ) ) +o ( card ‘ ( 𝐵 ‘ 𝑚 ) ) ) ≈ ( ( 𝐵 ‘ 𝑚 ) ⊔ ( 𝐵 ‘ 𝑚 ) ) ) |
| 142 | sdomentr | ⊢ ( ( ( ∪ 𝑘 ∈ 𝑚 ( 𝐵 ‘ 𝑘 ) ⊔ ( 𝐵 ‘ 𝑚 ) ) ≺ ( ( card ‘ ( 𝐵 ‘ 𝑚 ) ) +o ( card ‘ ( 𝐵 ‘ 𝑚 ) ) ) ∧ ( ( card ‘ ( 𝐵 ‘ 𝑚 ) ) +o ( card ‘ ( 𝐵 ‘ 𝑚 ) ) ) ≈ ( ( 𝐵 ‘ 𝑚 ) ⊔ ( 𝐵 ‘ 𝑚 ) ) ) → ( ∪ 𝑘 ∈ 𝑚 ( 𝐵 ‘ 𝑘 ) ⊔ ( 𝐵 ‘ 𝑚 ) ) ≺ ( ( 𝐵 ‘ 𝑚 ) ⊔ ( 𝐵 ‘ 𝑚 ) ) ) | |
| 143 | 137 141 142 | syl2anc | ⊢ ( ( ∪ 𝑘 ∈ 𝑚 ( 𝐵 ‘ 𝑘 ) ≺ ( 𝐵 ‘ 𝑚 ) ∧ ( 𝐵 ‘ 𝑚 ) ∈ Fin ) → ( ∪ 𝑘 ∈ 𝑚 ( 𝐵 ‘ 𝑘 ) ⊔ ( 𝐵 ‘ 𝑚 ) ) ≺ ( ( 𝐵 ‘ 𝑚 ) ⊔ ( 𝐵 ‘ 𝑚 ) ) ) |
| 144 | domsdomtr | ⊢ ( ( ∪ 𝑘 ∈ suc 𝑚 ( 𝐵 ‘ 𝑘 ) ≼ ( ∪ 𝑘 ∈ 𝑚 ( 𝐵 ‘ 𝑘 ) ⊔ ( 𝐵 ‘ 𝑚 ) ) ∧ ( ∪ 𝑘 ∈ 𝑚 ( 𝐵 ‘ 𝑘 ) ⊔ ( 𝐵 ‘ 𝑚 ) ) ≺ ( ( 𝐵 ‘ 𝑚 ) ⊔ ( 𝐵 ‘ 𝑚 ) ) ) → ∪ 𝑘 ∈ suc 𝑚 ( 𝐵 ‘ 𝑘 ) ≺ ( ( 𝐵 ‘ 𝑚 ) ⊔ ( 𝐵 ‘ 𝑚 ) ) ) | |
| 145 | 89 143 144 | sylancr | ⊢ ( ( ∪ 𝑘 ∈ 𝑚 ( 𝐵 ‘ 𝑘 ) ≺ ( 𝐵 ‘ 𝑚 ) ∧ ( 𝐵 ‘ 𝑚 ) ∈ Fin ) → ∪ 𝑘 ∈ suc 𝑚 ( 𝐵 ‘ 𝑘 ) ≺ ( ( 𝐵 ‘ 𝑚 ) ⊔ ( 𝐵 ‘ 𝑚 ) ) ) |
| 146 | 145 | expcom | ⊢ ( ( 𝐵 ‘ 𝑚 ) ∈ Fin → ( ∪ 𝑘 ∈ 𝑚 ( 𝐵 ‘ 𝑘 ) ≺ ( 𝐵 ‘ 𝑚 ) → ∪ 𝑘 ∈ suc 𝑚 ( 𝐵 ‘ 𝑘 ) ≺ ( ( 𝐵 ‘ 𝑚 ) ⊔ ( 𝐵 ‘ 𝑚 ) ) ) ) |
| 147 | 82 146 | syl | ⊢ ( ( 𝑚 ∈ ω ∧ ∀ 𝑘 ∈ suc suc 𝑚 ( 𝐵 ‘ 𝑘 ) ≈ 𝒫 𝑘 ) → ( ∪ 𝑘 ∈ 𝑚 ( 𝐵 ‘ 𝑘 ) ≺ ( 𝐵 ‘ 𝑚 ) → ∪ 𝑘 ∈ suc 𝑚 ( 𝐵 ‘ 𝑘 ) ≺ ( ( 𝐵 ‘ 𝑚 ) ⊔ ( 𝐵 ‘ 𝑚 ) ) ) ) |
| 148 | sdomentr | ⊢ ( ( ∪ 𝑘 ∈ suc 𝑚 ( 𝐵 ‘ 𝑘 ) ≺ ( ( 𝐵 ‘ 𝑚 ) ⊔ ( 𝐵 ‘ 𝑚 ) ) ∧ ( ( 𝐵 ‘ 𝑚 ) ⊔ ( 𝐵 ‘ 𝑚 ) ) ≈ ( 𝐵 ‘ suc 𝑚 ) ) → ∪ 𝑘 ∈ suc 𝑚 ( 𝐵 ‘ 𝑘 ) ≺ ( 𝐵 ‘ suc 𝑚 ) ) | |
| 149 | 148 | expcom | ⊢ ( ( ( 𝐵 ‘ 𝑚 ) ⊔ ( 𝐵 ‘ 𝑚 ) ) ≈ ( 𝐵 ‘ suc 𝑚 ) → ( ∪ 𝑘 ∈ suc 𝑚 ( 𝐵 ‘ 𝑘 ) ≺ ( ( 𝐵 ‘ 𝑚 ) ⊔ ( 𝐵 ‘ 𝑚 ) ) → ∪ 𝑘 ∈ suc 𝑚 ( 𝐵 ‘ 𝑘 ) ≺ ( 𝐵 ‘ suc 𝑚 ) ) ) |
| 150 | 72 147 149 | sylsyld | ⊢ ( ( 𝑚 ∈ ω ∧ ∀ 𝑘 ∈ suc suc 𝑚 ( 𝐵 ‘ 𝑘 ) ≈ 𝒫 𝑘 ) → ( ∪ 𝑘 ∈ 𝑚 ( 𝐵 ‘ 𝑘 ) ≺ ( 𝐵 ‘ 𝑚 ) → ∪ 𝑘 ∈ suc 𝑚 ( 𝐵 ‘ 𝑘 ) ≺ ( 𝐵 ‘ suc 𝑚 ) ) ) |
| 151 | 38 150 | syld | ⊢ ( ( 𝑚 ∈ ω ∧ ∀ 𝑘 ∈ suc suc 𝑚 ( 𝐵 ‘ 𝑘 ) ≈ 𝒫 𝑘 ) → ( ( ∀ 𝑘 ∈ suc 𝑚 ( 𝐵 ‘ 𝑘 ) ≈ 𝒫 𝑘 → ∪ 𝑘 ∈ 𝑚 ( 𝐵 ‘ 𝑘 ) ≺ ( 𝐵 ‘ 𝑚 ) ) → ∪ 𝑘 ∈ suc 𝑚 ( 𝐵 ‘ 𝑘 ) ≺ ( 𝐵 ‘ suc 𝑚 ) ) ) |
| 152 | 151 | ex | ⊢ ( 𝑚 ∈ ω → ( ∀ 𝑘 ∈ suc suc 𝑚 ( 𝐵 ‘ 𝑘 ) ≈ 𝒫 𝑘 → ( ( ∀ 𝑘 ∈ suc 𝑚 ( 𝐵 ‘ 𝑘 ) ≈ 𝒫 𝑘 → ∪ 𝑘 ∈ 𝑚 ( 𝐵 ‘ 𝑘 ) ≺ ( 𝐵 ‘ 𝑚 ) ) → ∪ 𝑘 ∈ suc 𝑚 ( 𝐵 ‘ 𝑘 ) ≺ ( 𝐵 ‘ suc 𝑚 ) ) ) ) |
| 153 | 152 | com23 | ⊢ ( 𝑚 ∈ ω → ( ( ∀ 𝑘 ∈ suc 𝑚 ( 𝐵 ‘ 𝑘 ) ≈ 𝒫 𝑘 → ∪ 𝑘 ∈ 𝑚 ( 𝐵 ‘ 𝑘 ) ≺ ( 𝐵 ‘ 𝑚 ) ) → ( ∀ 𝑘 ∈ suc suc 𝑚 ( 𝐵 ‘ 𝑘 ) ≈ 𝒫 𝑘 → ∪ 𝑘 ∈ suc 𝑚 ( 𝐵 ‘ 𝑘 ) ≺ ( 𝐵 ‘ suc 𝑚 ) ) ) ) |
| 154 | 6 12 18 32 153 | finds1 | ⊢ ( 𝑛 ∈ ω → ( ∀ 𝑘 ∈ suc 𝑛 ( 𝐵 ‘ 𝑘 ) ≈ 𝒫 𝑘 → ∪ 𝑘 ∈ 𝑛 ( 𝐵 ‘ 𝑘 ) ≺ ( 𝐵 ‘ 𝑛 ) ) ) |
| 155 | 154 | imp | ⊢ ( ( 𝑛 ∈ ω ∧ ∀ 𝑘 ∈ suc 𝑛 ( 𝐵 ‘ 𝑘 ) ≈ 𝒫 𝑘 ) → ∪ 𝑘 ∈ 𝑛 ( 𝐵 ‘ 𝑘 ) ≺ ( 𝐵 ‘ 𝑛 ) ) |