This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Ordering property of addition of natural numbers. (Contributed by NM, 9-Nov-2002)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | nnaordr | ⊢ ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω ) → ( 𝐴 ∈ 𝐵 ↔ ( 𝐴 +o 𝐶 ) ∈ ( 𝐵 +o 𝐶 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nnaord | ⊢ ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω ) → ( 𝐴 ∈ 𝐵 ↔ ( 𝐶 +o 𝐴 ) ∈ ( 𝐶 +o 𝐵 ) ) ) | |
| 2 | nnacom | ⊢ ( ( 𝐶 ∈ ω ∧ 𝐴 ∈ ω ) → ( 𝐶 +o 𝐴 ) = ( 𝐴 +o 𝐶 ) ) | |
| 3 | 2 | ancoms | ⊢ ( ( 𝐴 ∈ ω ∧ 𝐶 ∈ ω ) → ( 𝐶 +o 𝐴 ) = ( 𝐴 +o 𝐶 ) ) |
| 4 | 3 | 3adant2 | ⊢ ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω ) → ( 𝐶 +o 𝐴 ) = ( 𝐴 +o 𝐶 ) ) |
| 5 | nnacom | ⊢ ( ( 𝐶 ∈ ω ∧ 𝐵 ∈ ω ) → ( 𝐶 +o 𝐵 ) = ( 𝐵 +o 𝐶 ) ) | |
| 6 | 5 | ancoms | ⊢ ( ( 𝐵 ∈ ω ∧ 𝐶 ∈ ω ) → ( 𝐶 +o 𝐵 ) = ( 𝐵 +o 𝐶 ) ) |
| 7 | 6 | 3adant1 | ⊢ ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω ) → ( 𝐶 +o 𝐵 ) = ( 𝐵 +o 𝐶 ) ) |
| 8 | 4 7 | eleq12d | ⊢ ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω ) → ( ( 𝐶 +o 𝐴 ) ∈ ( 𝐶 +o 𝐵 ) ↔ ( 𝐴 +o 𝐶 ) ∈ ( 𝐵 +o 𝐶 ) ) ) |
| 9 | 1 8 | bitrd | ⊢ ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω ) → ( 𝐴 ∈ 𝐵 ↔ ( 𝐴 +o 𝐶 ) ∈ ( 𝐵 +o 𝐶 ) ) ) |