This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Cardinal addition with cardinal one (which is the same as ordinal one). Used in proof of Theorem 6J of Enderton p. 143. (Contributed by NM, 28-Sep-2004) (Revised by Mario Carneiro, 29-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | dju1en | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ ¬ 𝐴 ∈ 𝐴 ) → ( 𝐴 ⊔ 1o ) ≈ suc 𝐴 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | enrefg | ⊢ ( 𝐴 ∈ 𝑉 → 𝐴 ≈ 𝐴 ) | |
| 2 | 1 | adantr | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ ¬ 𝐴 ∈ 𝐴 ) → 𝐴 ≈ 𝐴 ) |
| 3 | ensn1g | ⊢ ( 𝐴 ∈ 𝑉 → { 𝐴 } ≈ 1o ) | |
| 4 | 3 | ensymd | ⊢ ( 𝐴 ∈ 𝑉 → 1o ≈ { 𝐴 } ) |
| 5 | 4 | adantr | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ ¬ 𝐴 ∈ 𝐴 ) → 1o ≈ { 𝐴 } ) |
| 6 | simpr | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ ¬ 𝐴 ∈ 𝐴 ) → ¬ 𝐴 ∈ 𝐴 ) | |
| 7 | disjsn | ⊢ ( ( 𝐴 ∩ { 𝐴 } ) = ∅ ↔ ¬ 𝐴 ∈ 𝐴 ) | |
| 8 | 6 7 | sylibr | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ ¬ 𝐴 ∈ 𝐴 ) → ( 𝐴 ∩ { 𝐴 } ) = ∅ ) |
| 9 | djuenun | ⊢ ( ( 𝐴 ≈ 𝐴 ∧ 1o ≈ { 𝐴 } ∧ ( 𝐴 ∩ { 𝐴 } ) = ∅ ) → ( 𝐴 ⊔ 1o ) ≈ ( 𝐴 ∪ { 𝐴 } ) ) | |
| 10 | 2 5 8 9 | syl3anc | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ ¬ 𝐴 ∈ 𝐴 ) → ( 𝐴 ⊔ 1o ) ≈ ( 𝐴 ∪ { 𝐴 } ) ) |
| 11 | df-suc | ⊢ suc 𝐴 = ( 𝐴 ∪ { 𝐴 } ) | |
| 12 | 10 11 | breqtrrdi | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ ¬ 𝐴 ∈ 𝐴 ) → ( 𝐴 ⊔ 1o ) ≈ suc 𝐴 ) |