This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Cardinal addition dominates union. (Contributed by NM, 28-Sep-2004) (Revised by Jim Kingdon, 15-Aug-2023)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | undjudom | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( 𝐴 ∪ 𝐵 ) ≼ ( 𝐴 ⊔ 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0ex | ⊢ ∅ ∈ V | |
| 2 | xpsnen2g | ⊢ ( ( ∅ ∈ V ∧ 𝐴 ∈ 𝑉 ) → ( { ∅ } × 𝐴 ) ≈ 𝐴 ) | |
| 3 | 1 2 | mpan | ⊢ ( 𝐴 ∈ 𝑉 → ( { ∅ } × 𝐴 ) ≈ 𝐴 ) |
| 4 | ensym | ⊢ ( ( { ∅ } × 𝐴 ) ≈ 𝐴 → 𝐴 ≈ ( { ∅ } × 𝐴 ) ) | |
| 5 | endom | ⊢ ( 𝐴 ≈ ( { ∅ } × 𝐴 ) → 𝐴 ≼ ( { ∅ } × 𝐴 ) ) | |
| 6 | 3 4 5 | 3syl | ⊢ ( 𝐴 ∈ 𝑉 → 𝐴 ≼ ( { ∅ } × 𝐴 ) ) |
| 7 | 1on | ⊢ 1o ∈ On | |
| 8 | xpsnen2g | ⊢ ( ( 1o ∈ On ∧ 𝐵 ∈ 𝑊 ) → ( { 1o } × 𝐵 ) ≈ 𝐵 ) | |
| 9 | 7 8 | mpan | ⊢ ( 𝐵 ∈ 𝑊 → ( { 1o } × 𝐵 ) ≈ 𝐵 ) |
| 10 | ensym | ⊢ ( ( { 1o } × 𝐵 ) ≈ 𝐵 → 𝐵 ≈ ( { 1o } × 𝐵 ) ) | |
| 11 | endom | ⊢ ( 𝐵 ≈ ( { 1o } × 𝐵 ) → 𝐵 ≼ ( { 1o } × 𝐵 ) ) | |
| 12 | 9 10 11 | 3syl | ⊢ ( 𝐵 ∈ 𝑊 → 𝐵 ≼ ( { 1o } × 𝐵 ) ) |
| 13 | xp01disjl | ⊢ ( ( { ∅ } × 𝐴 ) ∩ ( { 1o } × 𝐵 ) ) = ∅ | |
| 14 | undom | ⊢ ( ( ( 𝐴 ≼ ( { ∅ } × 𝐴 ) ∧ 𝐵 ≼ ( { 1o } × 𝐵 ) ) ∧ ( ( { ∅ } × 𝐴 ) ∩ ( { 1o } × 𝐵 ) ) = ∅ ) → ( 𝐴 ∪ 𝐵 ) ≼ ( ( { ∅ } × 𝐴 ) ∪ ( { 1o } × 𝐵 ) ) ) | |
| 15 | 13 14 | mpan2 | ⊢ ( ( 𝐴 ≼ ( { ∅ } × 𝐴 ) ∧ 𝐵 ≼ ( { 1o } × 𝐵 ) ) → ( 𝐴 ∪ 𝐵 ) ≼ ( ( { ∅ } × 𝐴 ) ∪ ( { 1o } × 𝐵 ) ) ) |
| 16 | 6 12 15 | syl2an | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( 𝐴 ∪ 𝐵 ) ≼ ( ( { ∅ } × 𝐴 ) ∪ ( { 1o } × 𝐵 ) ) ) |
| 17 | df-dju | ⊢ ( 𝐴 ⊔ 𝐵 ) = ( ( { ∅ } × 𝐴 ) ∪ ( { 1o } × 𝐵 ) ) | |
| 18 | 16 17 | breqtrrdi | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( 𝐴 ∪ 𝐵 ) ≼ ( 𝐴 ⊔ 𝐵 ) ) |