This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Trichotomy of equinumerosity for _om , proven using countable choice. Equivalently, all Dedekind-finite sets (as in isfin4-2 ) are finite in the usual sense and conversely. (Contributed by Mario Carneiro, 9-Feb-2013)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | domtriom.1 | ⊢ 𝐴 ∈ V | |
| Assertion | domtriom | ⊢ ( ω ≼ 𝐴 ↔ ¬ 𝐴 ≺ ω ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | domtriom.1 | ⊢ 𝐴 ∈ V | |
| 2 | domnsym | ⊢ ( ω ≼ 𝐴 → ¬ 𝐴 ≺ ω ) | |
| 3 | isfinite | ⊢ ( 𝐴 ∈ Fin ↔ 𝐴 ≺ ω ) | |
| 4 | eqid | ⊢ { 𝑦 ∣ ( 𝑦 ⊆ 𝐴 ∧ 𝑦 ≈ 𝒫 𝑛 ) } = { 𝑦 ∣ ( 𝑦 ⊆ 𝐴 ∧ 𝑦 ≈ 𝒫 𝑛 ) } | |
| 5 | fveq2 | ⊢ ( 𝑚 = 𝑛 → ( 𝑏 ‘ 𝑚 ) = ( 𝑏 ‘ 𝑛 ) ) | |
| 6 | fveq2 | ⊢ ( 𝑗 = 𝑘 → ( 𝑏 ‘ 𝑗 ) = ( 𝑏 ‘ 𝑘 ) ) | |
| 7 | 6 | cbviunv | ⊢ ∪ 𝑗 ∈ 𝑚 ( 𝑏 ‘ 𝑗 ) = ∪ 𝑘 ∈ 𝑚 ( 𝑏 ‘ 𝑘 ) |
| 8 | iuneq1 | ⊢ ( 𝑚 = 𝑛 → ∪ 𝑘 ∈ 𝑚 ( 𝑏 ‘ 𝑘 ) = ∪ 𝑘 ∈ 𝑛 ( 𝑏 ‘ 𝑘 ) ) | |
| 9 | 7 8 | eqtrid | ⊢ ( 𝑚 = 𝑛 → ∪ 𝑗 ∈ 𝑚 ( 𝑏 ‘ 𝑗 ) = ∪ 𝑘 ∈ 𝑛 ( 𝑏 ‘ 𝑘 ) ) |
| 10 | 5 9 | difeq12d | ⊢ ( 𝑚 = 𝑛 → ( ( 𝑏 ‘ 𝑚 ) ∖ ∪ 𝑗 ∈ 𝑚 ( 𝑏 ‘ 𝑗 ) ) = ( ( 𝑏 ‘ 𝑛 ) ∖ ∪ 𝑘 ∈ 𝑛 ( 𝑏 ‘ 𝑘 ) ) ) |
| 11 | 10 | cbvmptv | ⊢ ( 𝑚 ∈ ω ↦ ( ( 𝑏 ‘ 𝑚 ) ∖ ∪ 𝑗 ∈ 𝑚 ( 𝑏 ‘ 𝑗 ) ) ) = ( 𝑛 ∈ ω ↦ ( ( 𝑏 ‘ 𝑛 ) ∖ ∪ 𝑘 ∈ 𝑛 ( 𝑏 ‘ 𝑘 ) ) ) |
| 12 | 1 4 11 | domtriomlem | ⊢ ( ¬ 𝐴 ∈ Fin → ω ≼ 𝐴 ) |
| 13 | 3 12 | sylnbir | ⊢ ( ¬ 𝐴 ≺ ω → ω ≼ 𝐴 ) |
| 14 | 2 13 | impbii | ⊢ ( ω ≼ 𝐴 ↔ ¬ 𝐴 ≺ ω ) |