This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The sum of a powerset with itself is equipotent to the successor powerset. (Contributed by Mario Carneiro, 15-May-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | pwdju1 | ⊢ ( 𝐴 ∈ 𝑉 → ( 𝒫 𝐴 ⊔ 𝒫 𝐴 ) ≈ 𝒫 ( 𝐴 ⊔ 1o ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1on | ⊢ 1o ∈ On | |
| 2 | pwdjuen | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 1o ∈ On ) → 𝒫 ( 𝐴 ⊔ 1o ) ≈ ( 𝒫 𝐴 × 𝒫 1o ) ) | |
| 3 | 1 2 | mpan2 | ⊢ ( 𝐴 ∈ 𝑉 → 𝒫 ( 𝐴 ⊔ 1o ) ≈ ( 𝒫 𝐴 × 𝒫 1o ) ) |
| 4 | pwexg | ⊢ ( 𝐴 ∈ 𝑉 → 𝒫 𝐴 ∈ V ) | |
| 5 | 1oex | ⊢ 1o ∈ V | |
| 6 | 5 | pwex | ⊢ 𝒫 1o ∈ V |
| 7 | xpcomeng | ⊢ ( ( 𝒫 𝐴 ∈ V ∧ 𝒫 1o ∈ V ) → ( 𝒫 𝐴 × 𝒫 1o ) ≈ ( 𝒫 1o × 𝒫 𝐴 ) ) | |
| 8 | 4 6 7 | sylancl | ⊢ ( 𝐴 ∈ 𝑉 → ( 𝒫 𝐴 × 𝒫 1o ) ≈ ( 𝒫 1o × 𝒫 𝐴 ) ) |
| 9 | entr | ⊢ ( ( 𝒫 ( 𝐴 ⊔ 1o ) ≈ ( 𝒫 𝐴 × 𝒫 1o ) ∧ ( 𝒫 𝐴 × 𝒫 1o ) ≈ ( 𝒫 1o × 𝒫 𝐴 ) ) → 𝒫 ( 𝐴 ⊔ 1o ) ≈ ( 𝒫 1o × 𝒫 𝐴 ) ) | |
| 10 | 3 8 9 | syl2anc | ⊢ ( 𝐴 ∈ 𝑉 → 𝒫 ( 𝐴 ⊔ 1o ) ≈ ( 𝒫 1o × 𝒫 𝐴 ) ) |
| 11 | pwpw0 | ⊢ 𝒫 { ∅ } = { ∅ , { ∅ } } | |
| 12 | df1o2 | ⊢ 1o = { ∅ } | |
| 13 | 12 | pweqi | ⊢ 𝒫 1o = 𝒫 { ∅ } |
| 14 | df2o2 | ⊢ 2o = { ∅ , { ∅ } } | |
| 15 | 11 13 14 | 3eqtr4i | ⊢ 𝒫 1o = 2o |
| 16 | 15 | xpeq1i | ⊢ ( 𝒫 1o × 𝒫 𝐴 ) = ( 2o × 𝒫 𝐴 ) |
| 17 | xp2dju | ⊢ ( 2o × 𝒫 𝐴 ) = ( 𝒫 𝐴 ⊔ 𝒫 𝐴 ) | |
| 18 | 16 17 | eqtri | ⊢ ( 𝒫 1o × 𝒫 𝐴 ) = ( 𝒫 𝐴 ⊔ 𝒫 𝐴 ) |
| 19 | 10 18 | breqtrdi | ⊢ ( 𝐴 ∈ 𝑉 → 𝒫 ( 𝐴 ⊔ 1o ) ≈ ( 𝒫 𝐴 ⊔ 𝒫 𝐴 ) ) |
| 20 | 19 | ensymd | ⊢ ( 𝐴 ∈ 𝑉 → ( 𝒫 𝐴 ⊔ 𝒫 𝐴 ) ≈ 𝒫 ( 𝐴 ⊔ 1o ) ) |