This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The union of two countable sets is countable. (Contributed by FL, 25-Aug-2006) (Proof shortened by Mario Carneiro, 30-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | unctb | ⊢ ( ( 𝐴 ≼ ω ∧ 𝐵 ≼ ω ) → ( 𝐴 ∪ 𝐵 ) ≼ ω ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ctex | ⊢ ( 𝐴 ≼ ω → 𝐴 ∈ V ) | |
| 2 | ctex | ⊢ ( 𝐵 ≼ ω → 𝐵 ∈ V ) | |
| 3 | undjudom | ⊢ ( ( 𝐴 ∈ V ∧ 𝐵 ∈ V ) → ( 𝐴 ∪ 𝐵 ) ≼ ( 𝐴 ⊔ 𝐵 ) ) | |
| 4 | 1 2 3 | syl2an | ⊢ ( ( 𝐴 ≼ ω ∧ 𝐵 ≼ ω ) → ( 𝐴 ∪ 𝐵 ) ≼ ( 𝐴 ⊔ 𝐵 ) ) |
| 5 | djudom1 | ⊢ ( ( 𝐴 ≼ ω ∧ 𝐵 ∈ V ) → ( 𝐴 ⊔ 𝐵 ) ≼ ( ω ⊔ 𝐵 ) ) | |
| 6 | 2 5 | sylan2 | ⊢ ( ( 𝐴 ≼ ω ∧ 𝐵 ≼ ω ) → ( 𝐴 ⊔ 𝐵 ) ≼ ( ω ⊔ 𝐵 ) ) |
| 7 | simpr | ⊢ ( ( 𝐴 ≼ ω ∧ 𝐵 ≼ ω ) → 𝐵 ≼ ω ) | |
| 8 | omex | ⊢ ω ∈ V | |
| 9 | djudom2 | ⊢ ( ( 𝐵 ≼ ω ∧ ω ∈ V ) → ( ω ⊔ 𝐵 ) ≼ ( ω ⊔ ω ) ) | |
| 10 | 7 8 9 | sylancl | ⊢ ( ( 𝐴 ≼ ω ∧ 𝐵 ≼ ω ) → ( ω ⊔ 𝐵 ) ≼ ( ω ⊔ ω ) ) |
| 11 | domtr | ⊢ ( ( ( 𝐴 ⊔ 𝐵 ) ≼ ( ω ⊔ 𝐵 ) ∧ ( ω ⊔ 𝐵 ) ≼ ( ω ⊔ ω ) ) → ( 𝐴 ⊔ 𝐵 ) ≼ ( ω ⊔ ω ) ) | |
| 12 | 6 10 11 | syl2anc | ⊢ ( ( 𝐴 ≼ ω ∧ 𝐵 ≼ ω ) → ( 𝐴 ⊔ 𝐵 ) ≼ ( ω ⊔ ω ) ) |
| 13 | 8 8 | xpex | ⊢ ( ω × ω ) ∈ V |
| 14 | xp2dju | ⊢ ( 2o × ω ) = ( ω ⊔ ω ) | |
| 15 | ordom | ⊢ Ord ω | |
| 16 | 2onn | ⊢ 2o ∈ ω | |
| 17 | ordelss | ⊢ ( ( Ord ω ∧ 2o ∈ ω ) → 2o ⊆ ω ) | |
| 18 | 15 16 17 | mp2an | ⊢ 2o ⊆ ω |
| 19 | xpss1 | ⊢ ( 2o ⊆ ω → ( 2o × ω ) ⊆ ( ω × ω ) ) | |
| 20 | 18 19 | ax-mp | ⊢ ( 2o × ω ) ⊆ ( ω × ω ) |
| 21 | 14 20 | eqsstrri | ⊢ ( ω ⊔ ω ) ⊆ ( ω × ω ) |
| 22 | ssdomg | ⊢ ( ( ω × ω ) ∈ V → ( ( ω ⊔ ω ) ⊆ ( ω × ω ) → ( ω ⊔ ω ) ≼ ( ω × ω ) ) ) | |
| 23 | 13 21 22 | mp2 | ⊢ ( ω ⊔ ω ) ≼ ( ω × ω ) |
| 24 | xpomen | ⊢ ( ω × ω ) ≈ ω | |
| 25 | domentr | ⊢ ( ( ( ω ⊔ ω ) ≼ ( ω × ω ) ∧ ( ω × ω ) ≈ ω ) → ( ω ⊔ ω ) ≼ ω ) | |
| 26 | 23 24 25 | mp2an | ⊢ ( ω ⊔ ω ) ≼ ω |
| 27 | domtr | ⊢ ( ( ( 𝐴 ⊔ 𝐵 ) ≼ ( ω ⊔ ω ) ∧ ( ω ⊔ ω ) ≼ ω ) → ( 𝐴 ⊔ 𝐵 ) ≼ ω ) | |
| 28 | 12 26 27 | sylancl | ⊢ ( ( 𝐴 ≼ ω ∧ 𝐵 ≼ ω ) → ( 𝐴 ⊔ 𝐵 ) ≼ ω ) |
| 29 | domtr | ⊢ ( ( ( 𝐴 ∪ 𝐵 ) ≼ ( 𝐴 ⊔ 𝐵 ) ∧ ( 𝐴 ⊔ 𝐵 ) ≼ ω ) → ( 𝐴 ∪ 𝐵 ) ≼ ω ) | |
| 30 | 4 28 29 | syl2anc | ⊢ ( ( 𝐴 ≼ ω ∧ 𝐵 ≼ ω ) → ( 𝐴 ∪ 𝐵 ) ≼ ω ) |